PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2926–o2927.
Published online 2010 October 23. doi:  10.1107/S1600536810042091
PMCID: PMC3009063

11-[(E)-4-Bromo­benzyl­idene]-8-(4-bromo­phen­yl)-14-hy­droxy-3,13-diaza­hepta­cyclo­[13.7.1.19,13.02,9.02,14.03,7.019,23]tetra­cosa-1(22),15,17,19(23),20-pentaen-10-one

Abstract

In the title compound, C35H28Br2N2O2, the piperidone ring adopts a chair conformation and the five-membered ring of the pyrrolidine ring adopts an envelope conformation. The naphthalene ring system makes dihedral angles of 37.12 (8) and 50.62 (9)° with the terminal bromo-substituted benzene rings. The dihedral angle between the two bromo-substituted benzene rings is 72.54 (10)°. In the crystal, adjacent mol­ecules are connected by a pair of inter­molecular C—H(...)O hydrogen bonds, forming an inversion dimer. An intra­molecular O—H(...)N hydrogen bond is also present.

Related literature

For details of cyclo­addition, see: Babu & Raghunathan (2007 [triangle]); Boruah et al. (2007 [triangle]); Dondas et al. (2004 [triangle]); Hong et al. (2007 [triangle]); Karthikeyan et al. (2007 [triangle]); Liddell (1998 [triangle]); Ramesh et al. (2007 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2926-scheme1.jpg

Experimental

Crystal data

  • C35H28Br2N2O2
  • M r = 668.41
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2926-efi1.jpg
  • a = 8.4833 (10) Å
  • b = 11.8334 (13) Å
  • c = 14.8942 (17) Å
  • α = 79.868 (2)°
  • β = 80.705 (2)°
  • γ = 77.359 (2)°
  • V = 1424.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.88 mm−1
  • T = 100 K
  • 0.44 × 0.17 × 0.16 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.364, T max = 0.657
  • 14706 measured reflections
  • 6459 independent reflections
  • 5384 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.077
  • S = 1.07
  • 6459 reflections
  • 374 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042091/is2614sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042091/is2614Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research Grant No. 1001/PKIMIA/811133 and RSK thanks Universiti Sains Malaysia for the award of a post doctoral fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

1,3-Dipolar cycloadditions form a subject of intensive research in organic synthesis in view of their great synthetic potential (Karthikeyan et al., 2007; Hong et al., 2007). In particular, the cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of five membered heterocycles (Dondas et al., 2004; Boruah et al., 2007). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various l-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007; Ramesh et al., 2007). The pyrrolidine substructure occurs in many natural products of potential use in medicine and agriculture (Liddell, 1998).

The molecular structure of the title compound is shown in Fig. 1. The piperidine (N1/C8–C12) ring adopts a chair conformation [Q = 0.611 (2) Å, Θ = 139.77 (19) °, [var phi] = 241.0 (3) ° ; Cremer & Pople, 1975]. The pyrrolidine ring (N2/C20–C23) adopts an envelope conformation [puckering parameters Q = 0.385 (2) Å, Θ = 112.7 (3) °]. The naphthalene (C25–34) ring makes dihedral angles of 37.12 (8)° and 50.62 (9)° with the terminal bromo-substituted benzene (C1–C6) and (C13–C18) rings. The dihedral angle between the two bromo-substituted benzene (C1–C6) and (C13–C18) rings is 72.54 (10)°.

In the crystal packing (Fig. 2), adjacent molecules are connected by intermolecular C20—H20A···O2 hydrogen bonds, forming dimers arranged in sheets parallel to the bc-plane. An intramolecular O—H···N hydrogen bond is also present.

Experimental

A mixture of 3,5-bis[(E)-(4-bromophenyl)methylidene]tetrahydro-4(1H)-pyridinone (0.100 g, 0.231 mmol), acenaphthenequinone (0.042 g, 0.231 mmol) and proline (0.027 g, 0.231 mmol) were dissolved in methanol (5 ml) and refluxed for 30 minutes. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to afford the product which was recrystallised from ethyl acetate to reveal the title compound as colourless crystals.

Refinement

The hydroxyl H atom H1O2 was located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C—H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme (H atoms are omitted for clarity).
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) dimers. H atoms are not involving the hydrogen bond interactions are omitted for clarity.

Crystal data

C35H28Br2N2O2Z = 2
Mr = 668.41F(000) = 676
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4833 (10) ÅCell parameters from 6649 reflections
b = 11.8334 (13) Åθ = 2.4–28.4°
c = 14.8942 (17) ŵ = 2.88 mm1
α = 79.868 (2)°T = 100 K
β = 80.705 (2)°Block, colourless
γ = 77.359 (2)°0.44 × 0.17 × 0.16 mm
V = 1424.4 (3) Å3

Data collection

Bruker APEXII DUO CCD area-detector diffractometer6459 independent reflections
Radiation source: fine-focus sealed tube5384 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −11→10
Tmin = 0.364, Tmax = 0.657k = −15→15
14706 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.030P)2 + 0.5557P] where P = (Fo2 + 2Fc2)/3
6459 reflections(Δ/σ)max = 0.003
374 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.48 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.95912 (3)0.70022 (2)0.375928 (15)0.03029 (7)
Br20.50038 (3)0.80345 (2)1.346623 (16)0.03079 (8)
O10.36372 (17)0.90896 (12)0.88975 (10)0.0203 (3)
O20.11709 (19)0.50546 (13)0.90383 (10)0.0213 (3)
N10.3708 (2)0.56045 (14)0.88753 (11)0.0159 (3)
N2−0.02666 (19)0.70855 (14)0.94557 (11)0.0157 (3)
C10.7446 (3)0.66951 (19)0.64742 (15)0.0225 (4)
H1A0.75010.61240.69900.027*
C20.8377 (3)0.64507 (19)0.56501 (15)0.0254 (5)
H2A0.90440.57200.56100.030*
C30.8299 (3)0.7308 (2)0.48903 (14)0.0228 (4)
C40.7332 (3)0.84159 (19)0.49339 (14)0.0225 (4)
H4A0.73100.89900.44190.027*
C50.6406 (3)0.86453 (18)0.57587 (14)0.0213 (4)
H5A0.57580.93840.57940.026*
C60.6419 (2)0.77957 (18)0.65411 (13)0.0182 (4)
C70.5367 (2)0.81193 (17)0.73743 (13)0.0174 (4)
H7A0.50860.89190.74000.021*
C80.4743 (2)0.74428 (17)0.81089 (13)0.0157 (4)
C90.3618 (2)0.80907 (17)0.88225 (13)0.0150 (4)
C100.2428 (2)0.73992 (16)0.94201 (13)0.0136 (4)
C110.3388 (2)0.61511 (16)0.97163 (13)0.0158 (4)
H11A0.43990.61810.99290.019*
H11B0.27460.57241.02030.019*
C120.4976 (2)0.61138 (17)0.82450 (13)0.0168 (4)
H12A0.50390.58690.76500.020*
H12B0.60140.57870.84720.020*
C130.2392 (2)0.70348 (18)1.17155 (14)0.0192 (4)
H13A0.19530.63861.16970.023*
C140.3250 (3)0.70395 (19)1.24397 (14)0.0217 (4)
H14A0.33970.63961.28980.026*
C150.3874 (2)0.80129 (18)1.24641 (14)0.0201 (4)
C160.3701 (3)0.89758 (19)1.17861 (14)0.0228 (4)
H16A0.41370.96241.18100.027*
C170.2856 (2)0.89479 (18)1.10674 (14)0.0189 (4)
H17A0.27370.95891.06050.023*
C180.2184 (2)0.79958 (16)1.10161 (13)0.0151 (4)
C190.1330 (2)0.80060 (16)1.01924 (13)0.0145 (4)
H19A0.09370.88240.99400.017*
C20−0.0118 (2)0.73723 (17)1.03739 (13)0.0157 (4)
H20A0.01350.66471.08020.019*
C21−0.1792 (2)0.80658 (19)1.07021 (14)0.0216 (4)
H21A−0.18060.89001.05860.026*
H21B−0.20990.78361.13540.026*
C22−0.2933 (3)0.7743 (2)1.01281 (15)0.0237 (4)
H22A−0.32520.70051.03980.028*
H22B−0.39040.83481.00720.028*
C23−0.1894 (2)0.76447 (19)0.91974 (15)0.0218 (4)
H23A−0.22850.71630.88520.026*
H23B−0.18840.84100.88360.026*
C240.1223 (2)0.71519 (16)0.88158 (13)0.0137 (4)
C250.1053 (2)0.78952 (17)0.78823 (13)0.0165 (4)
C260.0509 (3)0.90806 (18)0.76295 (15)0.0220 (4)
H26A0.01550.95790.80710.026*
C270.0505 (3)0.9519 (2)0.66793 (17)0.0302 (5)
H27A0.01141.03130.65070.036*
C280.1049 (3)0.8824 (2)0.60051 (16)0.0333 (5)
H28A0.10340.91520.53910.040*
C290.1642 (3)0.7598 (2)0.62403 (15)0.0253 (5)
C300.2261 (3)0.6766 (2)0.56313 (15)0.0330 (6)
H30A0.23320.70080.50000.040*
C310.2762 (3)0.5598 (2)0.59660 (16)0.0326 (6)
H31A0.31430.50630.55540.039*
C320.2708 (3)0.5194 (2)0.69231 (15)0.0257 (5)
H32A0.30410.44040.71390.031*
C330.2154 (2)0.59901 (18)0.75230 (14)0.0186 (4)
C340.1594 (2)0.71801 (18)0.71875 (14)0.0187 (4)
C350.2080 (2)0.58723 (16)0.85513 (13)0.0156 (4)
H1O20.035 (4)0.538 (2)0.9321 (19)0.037 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02851 (13)0.03823 (14)0.02268 (12)−0.00510 (10)0.00563 (9)−0.01058 (9)
Br20.03305 (14)0.03556 (14)0.02841 (13)−0.00501 (10)−0.01459 (10)−0.00954 (10)
O10.0203 (8)0.0184 (7)0.0235 (7)−0.0077 (6)0.0010 (6)−0.0048 (6)
O20.0213 (8)0.0153 (7)0.0275 (8)−0.0092 (6)0.0025 (6)−0.0015 (6)
N10.0155 (8)0.0147 (8)0.0164 (8)−0.0019 (6)−0.0024 (6)−0.0002 (6)
N20.0117 (8)0.0177 (8)0.0184 (8)−0.0053 (6)−0.0026 (6)−0.0006 (6)
C10.0177 (11)0.0235 (11)0.0230 (10)−0.0020 (8)0.0011 (8)−0.0004 (8)
C20.0218 (11)0.0233 (11)0.0289 (11)−0.0033 (9)0.0038 (9)−0.0057 (9)
C30.0185 (10)0.0330 (12)0.0182 (10)−0.0077 (9)0.0028 (8)−0.0084 (9)
C40.0254 (11)0.0249 (11)0.0177 (10)−0.0079 (9)−0.0022 (8)−0.0017 (8)
C50.0228 (11)0.0196 (10)0.0216 (10)−0.0051 (8)−0.0021 (8)−0.0031 (8)
C60.0154 (10)0.0223 (10)0.0179 (10)−0.0068 (8)−0.0007 (8)−0.0032 (8)
C70.0161 (10)0.0180 (9)0.0192 (10)−0.0049 (8)−0.0027 (8)−0.0032 (8)
C80.0095 (9)0.0199 (10)0.0182 (9)−0.0022 (7)−0.0028 (7)−0.0041 (8)
C90.0129 (9)0.0165 (9)0.0161 (9)−0.0025 (7)−0.0050 (7)−0.0011 (7)
C100.0118 (9)0.0146 (9)0.0142 (9)−0.0021 (7)−0.0031 (7)−0.0014 (7)
C110.0156 (10)0.0142 (9)0.0164 (9)−0.0012 (7)−0.0037 (7)−0.0002 (7)
C120.0136 (10)0.0169 (9)0.0194 (9)−0.0018 (7)−0.0022 (7)−0.0029 (8)
C130.0195 (10)0.0199 (10)0.0189 (10)−0.0065 (8)−0.0011 (8)−0.0032 (8)
C140.0222 (11)0.0246 (11)0.0166 (10)−0.0020 (9)−0.0030 (8)−0.0010 (8)
C150.0162 (10)0.0259 (11)0.0195 (10)−0.0018 (8)−0.0032 (8)−0.0090 (8)
C160.0216 (11)0.0246 (11)0.0250 (11)−0.0071 (9)−0.0034 (9)−0.0076 (9)
C170.0181 (10)0.0183 (10)0.0201 (10)−0.0042 (8)−0.0012 (8)−0.0027 (8)
C180.0119 (9)0.0157 (9)0.0165 (9)−0.0011 (7)0.0001 (7)−0.0030 (7)
C190.0127 (9)0.0128 (9)0.0171 (9)−0.0022 (7)−0.0013 (7)−0.0007 (7)
C200.0139 (10)0.0157 (9)0.0171 (9)−0.0039 (8)−0.0018 (7)−0.0004 (7)
C210.0129 (10)0.0273 (11)0.0222 (10)−0.0020 (8)0.0011 (8)−0.0026 (8)
C220.0135 (10)0.0265 (11)0.0298 (11)−0.0034 (8)−0.0023 (8)−0.0021 (9)
C230.0127 (10)0.0257 (11)0.0282 (11)−0.0029 (8)−0.0063 (8)−0.0046 (9)
C240.0120 (9)0.0121 (9)0.0172 (9)−0.0037 (7)−0.0031 (7)0.0001 (7)
C250.0121 (9)0.0200 (10)0.0172 (9)−0.0055 (8)−0.0044 (7)0.0029 (8)
C260.0199 (11)0.0185 (10)0.0263 (11)−0.0045 (8)−0.0043 (8)0.0026 (8)
C270.0277 (13)0.0243 (11)0.0343 (13)−0.0051 (10)−0.0081 (10)0.0109 (10)
C280.0298 (13)0.0455 (15)0.0213 (11)−0.0106 (11)−0.0075 (10)0.0115 (10)
C290.0211 (11)0.0355 (12)0.0210 (10)−0.0105 (9)−0.0066 (9)0.0009 (9)
C300.0293 (13)0.0566 (16)0.0163 (10)−0.0149 (12)−0.0037 (9)−0.0050 (10)
C310.0305 (13)0.0462 (15)0.0266 (12)−0.0114 (11)−0.0012 (10)−0.0172 (11)
C320.0251 (12)0.0286 (12)0.0270 (11)−0.0082 (9)−0.0037 (9)−0.0095 (9)
C330.0143 (10)0.0240 (10)0.0194 (10)−0.0072 (8)−0.0029 (8)−0.0031 (8)
C340.0165 (10)0.0231 (10)0.0185 (10)−0.0081 (8)−0.0060 (8)0.0002 (8)
C350.0148 (10)0.0139 (9)0.0182 (9)−0.0044 (7)−0.0013 (7)−0.0012 (7)

Geometric parameters (Å, °)

Br1—C31.901 (2)C15—C161.382 (3)
Br2—C151.9063 (19)C16—C171.390 (3)
O1—C91.210 (2)C16—H16A0.9300
O2—C351.399 (2)C17—C181.388 (3)
O2—H1O20.81 (3)C17—H17A0.9300
N1—C111.470 (2)C18—C191.519 (3)
N1—C121.470 (3)C19—C201.539 (3)
N1—C351.487 (2)C19—H19A0.9800
N2—C241.463 (2)C20—C211.529 (3)
N2—C231.474 (2)C20—H20A0.9800
N2—C201.496 (2)C21—C221.536 (3)
C1—C21.388 (3)C21—H21A0.9700
C1—C61.409 (3)C21—H21B0.9700
C1—H1A0.9300C22—C231.526 (3)
C2—C31.380 (3)C22—H22A0.9700
C2—H2A0.9300C22—H22B0.9700
C3—C41.392 (3)C23—H23A0.9700
C4—C51.383 (3)C23—H23B0.9700
C4—H4A0.9300C24—C251.519 (3)
C5—C61.398 (3)C24—C351.616 (3)
C5—H5A0.9300C25—C261.382 (3)
C6—C71.464 (3)C25—C341.408 (3)
C7—C81.345 (3)C26—C271.419 (3)
C7—H7A0.9300C26—H26A0.9300
C8—C91.506 (3)C27—C281.368 (4)
C8—C121.523 (3)C27—H27A0.9300
C9—C101.515 (3)C28—C291.428 (3)
C10—C191.536 (2)C28—H28A0.9300
C10—C111.549 (3)C29—C341.408 (3)
C10—C241.569 (2)C29—C301.415 (3)
C11—H11A0.9700C30—C311.382 (4)
C11—H11B0.9700C30—H30A0.9300
C12—H12A0.9700C31—C321.418 (3)
C12—H12B0.9700C31—H31A0.9300
C13—C141.397 (3)C32—C331.369 (3)
C13—C181.401 (3)C32—H32A0.9300
C13—H13A0.9300C33—C341.412 (3)
C14—C151.377 (3)C33—C351.505 (3)
C14—H14A0.9300
C35—O2—H1O2110 (2)C18—C19—C20116.38 (16)
C11—N1—C12108.25 (15)C10—C19—C20101.97 (14)
C11—N1—C35102.77 (14)C18—C19—H19A108.0
C12—N1—C35115.10 (15)C10—C19—H19A108.0
C24—N2—C23122.19 (16)C20—C19—H19A108.0
C24—N2—C20111.43 (14)N2—C20—C21105.40 (15)
C23—N2—C20109.51 (15)N2—C20—C19104.64 (15)
C2—C1—C6121.0 (2)C21—C20—C19117.58 (16)
C2—C1—H1A119.5N2—C20—H20A109.6
C6—C1—H1A119.5C21—C20—H20A109.6
C3—C2—C1119.1 (2)C19—C20—H20A109.6
C3—C2—H2A120.5C20—C21—C22103.60 (16)
C1—C2—H2A120.5C20—C21—H21A111.0
C2—C3—C4121.69 (19)C22—C21—H21A111.0
C2—C3—Br1119.80 (16)C20—C21—H21B111.0
C4—C3—Br1118.47 (16)C22—C21—H21B111.0
C5—C4—C3118.6 (2)H21A—C21—H21B109.0
C5—C4—H4A120.7C23—C22—C21103.12 (16)
C3—C4—H4A120.7C23—C22—H22A111.1
C4—C5—C6121.70 (19)C21—C22—H22A111.1
C4—C5—H5A119.1C23—C22—H22B111.1
C6—C5—H5A119.1C21—C22—H22B111.1
C5—C6—C1117.91 (18)H22A—C22—H22B109.1
C5—C6—C7117.39 (18)N2—C23—C22102.76 (16)
C1—C6—C7124.70 (19)N2—C23—H23A111.2
C8—C7—C6130.21 (19)C22—C23—H23A111.2
C8—C7—H7A114.9N2—C23—H23B111.2
C6—C7—H7A114.9C22—C23—H23B111.2
C7—C8—C9115.48 (17)H23A—C23—H23B109.1
C7—C8—C12126.23 (17)N2—C24—C25117.47 (15)
C9—C8—C12118.14 (17)N2—C24—C10103.75 (14)
O1—C9—C8122.78 (18)C25—C24—C10118.48 (16)
O1—C9—C10122.87 (17)N2—C24—C35110.44 (15)
C8—C9—C10114.33 (16)C25—C24—C35102.85 (15)
C9—C10—C19115.73 (15)C10—C24—C35102.89 (14)
C9—C10—C11107.62 (15)C26—C25—C34118.66 (18)
C19—C10—C11115.94 (16)C26—C25—C24131.91 (18)
C9—C10—C24109.71 (15)C34—C25—C24109.42 (17)
C19—C10—C24104.93 (15)C25—C26—C27118.3 (2)
C11—C10—C24101.86 (14)C25—C26—H26A120.8
N1—C11—C10103.98 (14)C27—C26—H26A120.8
N1—C11—H11A111.0C28—C27—C26122.9 (2)
C10—C11—H11A111.0C28—C27—H27A118.6
N1—C11—H11B111.0C26—C27—H27A118.6
C10—C11—H11B111.0C27—C28—C29120.3 (2)
H11A—C11—H11B109.0C27—C28—H28A119.8
N1—C12—C8116.06 (16)C29—C28—H28A119.8
N1—C12—H12A108.3C34—C29—C30116.9 (2)
C8—C12—H12A108.3C34—C29—C28115.7 (2)
N1—C12—H12B108.3C30—C29—C28127.4 (2)
C8—C12—H12B108.3C31—C30—C29120.6 (2)
H12A—C12—H12B107.4C31—C30—H30A119.7
C14—C13—C18120.83 (19)C29—C30—H30A119.7
C14—C13—H13A119.6C30—C31—C32121.6 (2)
C18—C13—H13A119.6C30—C31—H31A119.2
C15—C14—C13118.9 (2)C32—C31—H31A119.2
C15—C14—H14A120.5C33—C32—C31118.6 (2)
C13—C14—H14A120.5C33—C32—H32A120.7
C14—C15—C16122.01 (18)C31—C32—H32A120.7
C14—C15—Br2118.98 (16)C32—C33—C34120.08 (19)
C16—C15—Br2119.01 (15)C32—C33—C35131.8 (2)
C15—C16—C17118.09 (19)C34—C33—C35108.01 (16)
C15—C16—H16A121.0C29—C34—C25124.07 (19)
C17—C16—H16A121.0C29—C34—C33122.07 (19)
C18—C17—C16122.2 (2)C25—C34—C33113.82 (17)
C18—C17—H17A118.9O2—C35—N1108.74 (15)
C16—C17—H17A118.9O2—C35—C33113.94 (15)
C17—C18—C13117.91 (17)N1—C35—C33113.66 (16)
C17—C18—C19119.40 (17)O2—C35—C24108.79 (15)
C13—C18—C19122.62 (17)N1—C35—C24105.65 (14)
C18—C19—C10113.92 (15)C33—C35—C24105.59 (15)
C6—C1—C2—C30.6 (3)C23—N2—C24—C254.1 (2)
C1—C2—C3—C41.1 (3)C20—N2—C24—C25−128.02 (17)
C1—C2—C3—Br1178.94 (16)C23—N2—C24—C10137.01 (17)
C2—C3—C4—C5−1.3 (3)C20—N2—C24—C104.87 (19)
Br1—C3—C4—C5−179.23 (15)C23—N2—C24—C35−113.35 (18)
C3—C4—C5—C6−0.1 (3)C20—N2—C24—C35114.51 (16)
C4—C5—C6—C11.7 (3)C9—C10—C24—N2−150.70 (15)
C4—C5—C6—C7−178.66 (19)C19—C10—C24—N2−25.76 (18)
C2—C1—C6—C5−2.0 (3)C11—C10—C24—N295.48 (16)
C2—C1—C6—C7178.4 (2)C9—C10—C24—C25−18.4 (2)
C5—C6—C7—C8157.1 (2)C19—C10—C24—C25106.54 (18)
C1—C6—C7—C8−23.3 (3)C11—C10—C24—C25−132.22 (17)
C6—C7—C8—C9−176.58 (18)C9—C10—C24—C3594.16 (17)
C6—C7—C8—C12−1.1 (3)C19—C10—C24—C35−140.89 (15)
C7—C8—C9—O1−21.9 (3)C11—C10—C24—C35−19.66 (18)
C12—C8—C9—O1162.27 (18)N2—C24—C25—C2663.1 (3)
C7—C8—C9—C10156.46 (17)C10—C24—C25—C26−62.8 (3)
C12—C8—C9—C10−19.4 (2)C35—C24—C25—C26−175.4 (2)
O1—C9—C10—C19−5.1 (3)N2—C24—C25—C34−117.82 (18)
C8—C9—C10—C19176.55 (15)C10—C24—C25—C34116.24 (18)
O1—C9—C10—C11−136.63 (19)C35—C24—C25—C343.7 (2)
C8—C9—C10—C1145.05 (19)C34—C25—C26—C270.7 (3)
O1—C9—C10—C24113.3 (2)C24—C25—C26—C27179.7 (2)
C8—C9—C10—C24−65.00 (19)C25—C26—C27—C28−1.6 (3)
C12—N1—C11—C1073.46 (18)C26—C27—C28—C290.7 (4)
C35—N1—C11—C10−48.73 (18)C27—C28—C29—C341.0 (3)
C9—C10—C11—N1−72.90 (17)C27—C28—C29—C30−179.3 (2)
C19—C10—C11—N1155.71 (15)C34—C29—C30—C311.1 (3)
C24—C10—C11—N142.46 (18)C28—C29—C30—C31−178.6 (2)
C11—N1—C12—C8−47.2 (2)C29—C30—C31—C32−1.3 (4)
C35—N1—C12—C867.1 (2)C30—C31—C32—C33−0.5 (3)
C7—C8—C12—N1−155.72 (18)C31—C32—C33—C342.4 (3)
C9—C8—C12—N119.6 (2)C31—C32—C33—C35−174.0 (2)
C18—C13—C14—C150.8 (3)C30—C29—C34—C25178.4 (2)
C13—C14—C15—C16−1.1 (3)C28—C29—C34—C25−1.8 (3)
C13—C14—C15—Br2178.65 (15)C30—C29—C34—C330.8 (3)
C14—C15—C16—C170.5 (3)C28—C29—C34—C33−179.4 (2)
Br2—C15—C16—C17−179.23 (15)C26—C25—C34—C291.0 (3)
C15—C16—C17—C180.4 (3)C24—C25—C34—C29−178.22 (18)
C16—C17—C18—C13−0.6 (3)C26—C25—C34—C33178.72 (18)
C16—C17—C18—C19−177.76 (18)C24—C25—C34—C33−0.5 (2)
C14—C13—C18—C170.0 (3)C32—C33—C34—C29−2.6 (3)
C14—C13—C18—C19177.05 (18)C35—C33—C34—C29174.52 (18)
C17—C18—C19—C1094.5 (2)C32—C33—C34—C25179.59 (19)
C13—C18—C19—C10−82.5 (2)C35—C33—C34—C25−3.3 (2)
C17—C18—C19—C20−147.24 (18)C11—N1—C35—O2−81.90 (17)
C13—C18—C19—C2035.7 (3)C12—N1—C35—O2160.66 (15)
C9—C10—C19—C18−76.7 (2)C11—N1—C35—C33150.04 (16)
C11—C10—C19—C1850.8 (2)C12—N1—C35—C3332.6 (2)
C24—C10—C19—C18162.24 (15)C11—N1—C35—C2434.74 (18)
C9—C10—C19—C20157.07 (15)C12—N1—C35—C24−82.70 (18)
C11—C10—C19—C20−75.47 (19)C32—C33—C35—O2−58.7 (3)
C24—C10—C19—C2036.01 (18)C34—C33—C35—O2124.68 (18)
C24—N2—C20—C21142.38 (16)C32—C33—C35—N166.7 (3)
C23—N2—C20—C214.1 (2)C34—C33—C35—N1−109.99 (18)
C24—N2—C20—C1917.7 (2)C32—C33—C35—C24−178.0 (2)
C23—N2—C20—C19−120.52 (17)C34—C33—C35—C245.4 (2)
C18—C19—C20—N2−157.36 (15)N2—C24—C35—O2−1.9 (2)
C10—C19—C20—N2−32.76 (18)C25—C24—C35—O2−128.07 (16)
C18—C19—C20—C2186.1 (2)C10—C24—C35—O2108.29 (16)
C10—C19—C20—C21−149.26 (17)N2—C24—C35—N1−118.52 (16)
N2—C20—C21—C2220.2 (2)C25—C24—C35—N1115.33 (16)
C19—C20—C21—C22136.26 (18)C10—C24—C35—N1−8.31 (19)
C20—C21—C22—C23−36.4 (2)N2—C24—C35—C33120.76 (16)
C24—N2—C23—C22−159.72 (16)C25—C24—C35—C33−5.39 (19)
C20—N2—C23—C22−26.8 (2)C10—C24—C35—C33−129.03 (16)
C21—C22—C23—N238.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.81 (3)2.01 (2)2.578 (2)127 (3)
C20—H20A···O2i0.982.463.130 (3)125

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2614).

References

  • Babu, A. R. S. & Raghunathan, R. (2007). Tetrahedron Lett.48, 305–308.
  • Boruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett.48, 4535–4537.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dondas, H. A., Fishwick, C. W. G., Grigg, R. & Kilner, C. (2004). Tetrahedron, 60, 3473–3485.
  • Hong, X., France, S. & Padwa, A. (2007). Tetrahedron, 63, 5962–5976. [PMC free article] [PubMed]
  • Karthikeyan, K., Perumal, P. T., Etti, S. & Shanmugam, G. (2007). Tetrahedron, 63, 10581–10586.
  • Liddell, J. R. (1998). Nat. Prod. Rep.15, 363–370. [PubMed]
  • Ramesh, E., Kathiresan, M. & Raghunathan, R. (2007). Tetrahedron Lett.48, 1835–1839.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography