PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2922.
Published online 2010 October 23. doi:  10.1107/S1600536810042030
PMCID: PMC3009058

N-(4-Chloro­phen­yl)-2-hy­droxy­benzamide

Abstract

In the title compound, C13H10ClNO2, the dihedral angle between the aromatic rings is 20.02 (6)° and intra­molecular N—H(...)O and C—H(...)O hydrogen bonds both generate S(6) rings. In the crystal, mol­ecules are linked by O—H(...)O hydrogen bonds into C(6) chains propagating in [010].

Related literature

For biological background, see: Samanta et al. (2010 [triangle]). For related structures, see: Raza et al. (2009 [triangle], 2010a [triangle],b [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2922-scheme1.jpg

Experimental

Crystal data

  • C13H10ClNO2
  • M r = 247.67
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2922-efi1.jpg
  • a = 7.6832 (3) Å
  • b = 11.0225 (3) Å
  • c = 27.1427 (11) Å
  • V = 2298.66 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 296 K
  • 0.28 × 0.16 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.942, T max = 0.955
  • 9244 measured reflections
  • 2064 independent reflections
  • 1561 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.100
  • S = 1.03
  • 2064 reflections
  • 160 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042030/hb5690sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042030/hb5690Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of a research project (20–819).

supplementary crystallographic information

Comment

Different synthetic derivatives of benzoxazepine have been reported as anti-tumor and anti-inflammatory agents (Samanta et al., 2010). The title compound (I) was prepared as a precursor for the synthesis of chiral benzoxazepines and it will also be utilized for the complexation with various metals.

We have reported the crystal structures of (II) i.e., 2-hydroxy-5-nitro-N-phenylbenzamide (Raza et al., 2010a), (III) i.e., 2-Hydroxy-N-(3-nitrophenyl)benzamide (Raza et al., 2010b) and (IV) i.e., 2-Hydroxy-3-nitro-N-phenylbenzamide (Raza et al., 2009) which are related to the title compound.

In (I), the 2-hydroxyphenyl group A (C1–C6/O2) and 4-chloroanilinic group B (C8—C13/N1/CL1) are planar with r. m. s. deviation of 0.0072 and 0.0035 Å, respectively. The dihedral angle between A/B is 20.02 (6)°. There exist intramolecular H-bondings of N—H···O and C—H···O types (Table 1, Fig. 1) completing S(6) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of one dimensional polymeric chains extending along the crystallographic b axis due to intermolecular H-bondings of O—H···O type (Table 1, Fig. 2).

Experimental

To a well stirred solution of 2-hydroxy benzoic acid (1.38 g, 0.01 mol, 1 eq) and SOCl2 (0.87 ml, 1.42 g, 0.012 mol, 1.2 eq) in dry CHCl3, the 4-chloroaniline (1.27 g, 0.01 mol, 1 eq) and Et3N (2.08 ml, 1.5 g, 0.015 mol, 1.5 eq) was added slowly at room temperature followed by 3 h reflux. After commencement of reaction, the reaction mixture was cooled to room temperature, neutralized with aqueous NaHCO3 (10%) and extracted with EtOAc (3×25 ml). The organic layer was combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford light yellowish solid. The column chromatographic purification with 0 and 1% EtOAc in petrol (0.5 L each) over a silica gel packed column (of 25.5 cm length) afforded colorless prisms of (I) in 24th–106th fraction (10 ml each) upon leaving at room temperature.

Refinement

The coordinates of H-atoms of amide and hydroxy group were refined. H atoms were positioned geometrically with (C–H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all H-atoms.

Figures

Fig. 1.
View of the title compound with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius. The dotted lines indicate the intramolecular H-bonds.
Fig. 2.
The partial packing for (I), which shows that molecules form one dimensional polymeric chains parallel to b axis.

Crystal data

C13H10ClNO2F(000) = 1024
Mr = 247.67Dx = 1.431 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1561 reflections
a = 7.6832 (3) Åθ = 3.0–25.3°
b = 11.0225 (3) ŵ = 0.32 mm1
c = 27.1427 (11) ÅT = 296 K
V = 2298.66 (14) Å3Needle, colorless
Z = 80.28 × 0.16 × 0.14 mm

Data collection

Bruker Kappa APEXII CCD diffractometer2064 independent reflections
Radiation source: fine-focus sealed tube1561 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 7.5 pixels mm-1θmax = 25.3°, θmin = 3.0°
ω scansh = −9→6
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −13→11
Tmin = 0.942, Tmax = 0.955l = −24→32
9244 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0469P)2 + 0.540P] where P = (Fo2 + 2Fc2)/3
2064 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.37823 (11)0.20751 (7)−0.03285 (2)0.0959 (3)
O10.33904 (17)−0.07407 (10)0.19332 (4)0.0464 (4)
O20.52554 (18)0.23574 (11)0.26024 (5)0.0482 (5)
N10.3890 (2)0.12607 (13)0.18202 (5)0.0423 (5)
C10.3726 (2)0.04847 (14)0.26498 (6)0.0355 (5)
C20.4477 (2)0.14916 (14)0.28844 (6)0.0373 (6)
C30.4430 (3)0.15880 (16)0.33940 (6)0.0461 (6)
C40.3619 (3)0.07148 (18)0.36719 (7)0.0519 (7)
C50.2852 (3)−0.02736 (17)0.34495 (7)0.0513 (7)
C60.2926 (2)−0.03846 (15)0.29454 (6)0.0421 (6)
C70.3672 (2)0.02787 (15)0.21083 (6)0.0369 (6)
C80.3852 (2)0.13776 (15)0.13042 (6)0.0400 (6)
C90.3543 (3)0.04338 (18)0.09804 (7)0.0552 (7)
C100.3524 (3)0.0662 (2)0.04786 (7)0.0622 (8)
C110.3811 (3)0.1803 (2)0.03022 (7)0.0569 (8)
C120.4125 (3)0.27414 (19)0.06207 (8)0.0622 (8)
C130.4130 (3)0.25274 (17)0.11203 (7)0.0529 (7)
H10.413 (2)0.1904 (18)0.1968 (7)0.0508*
H20.565 (3)0.291 (2)0.2768 (8)0.0723*
H30.495110.224820.354810.0553*
H40.358620.079100.401300.0623*
H50.22913−0.085920.363830.0615*
H60.24253−0.106080.279730.0505*
H90.33497−0.034670.109840.0663*
H100.331270.002960.025960.0746*
H120.433260.351790.050020.0747*
H130.432380.316720.133690.0635*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1415 (7)0.1043 (6)0.0418 (3)0.0140 (4)−0.0015 (4)0.0171 (3)
O10.0660 (9)0.0328 (7)0.0405 (7)0.0004 (5)−0.0077 (6)−0.0046 (5)
O20.0679 (9)0.0339 (7)0.0428 (8)−0.0089 (6)−0.0031 (6)−0.0018 (5)
N10.0591 (10)0.0321 (8)0.0358 (8)0.0004 (7)−0.0009 (7)−0.0028 (6)
C10.0373 (9)0.0326 (9)0.0366 (9)0.0072 (7)0.0002 (7)−0.0006 (7)
C20.0416 (10)0.0296 (9)0.0406 (10)0.0064 (7)−0.0003 (8)0.0004 (7)
C30.0546 (12)0.0406 (10)0.0431 (10)0.0015 (9)−0.0044 (9)−0.0076 (8)
C40.0661 (13)0.0547 (12)0.0349 (10)0.0049 (10)0.0035 (9)−0.0031 (9)
C50.0592 (12)0.0490 (12)0.0456 (11)−0.0030 (9)0.0109 (9)0.0038 (8)
C60.0441 (11)0.0371 (10)0.0450 (10)−0.0014 (8)0.0035 (8)−0.0034 (8)
C70.0370 (10)0.0341 (10)0.0395 (10)0.0058 (7)−0.0015 (7)−0.0010 (7)
C80.0425 (10)0.0412 (10)0.0364 (10)0.0049 (8)−0.0015 (8)0.0001 (7)
C90.0797 (15)0.0471 (12)0.0389 (10)−0.0058 (10)0.0010 (10)−0.0005 (8)
C100.0862 (16)0.0611 (14)0.0393 (11)−0.0050 (11)−0.0014 (10)−0.0059 (9)
C110.0687 (14)0.0661 (14)0.0359 (11)0.0103 (10)0.0010 (10)0.0072 (9)
C120.0852 (16)0.0488 (12)0.0527 (13)0.0050 (10)0.0011 (11)0.0149 (10)
C130.0713 (14)0.0409 (10)0.0466 (12)0.0039 (9)−0.0017 (10)0.0018 (8)

Geometric parameters (Å, °)

Cl1—C111.738 (2)C8—C131.379 (3)
O1—C71.239 (2)C8—C91.382 (3)
O2—C21.362 (2)C9—C101.385 (3)
O2—H20.82 (2)C10—C111.364 (3)
N1—C81.407 (2)C11—C121.370 (3)
N1—C71.346 (2)C12—C131.376 (3)
N1—H10.84 (2)C3—H30.9300
C1—C61.393 (2)C4—H40.9300
C1—C71.488 (2)C5—H50.9300
C1—C21.404 (2)C6—H60.9300
C2—C31.388 (2)C9—H90.9300
C3—C41.372 (3)C10—H100.9300
C4—C51.378 (3)C12—H120.9300
C5—C61.375 (3)C13—H130.9300
C2—O2—H2112.1 (15)Cl1—C11—C12119.58 (17)
C7—N1—C8130.51 (14)Cl1—C11—C10120.19 (16)
C8—N1—H1113.9 (13)C10—C11—C12120.23 (18)
C7—N1—H1115.5 (13)C11—C12—C13119.54 (19)
C2—C1—C6117.65 (15)C8—C13—C12120.92 (18)
C2—C1—C7125.47 (14)C2—C3—H3120.00
C6—C1—C7116.86 (14)C4—C3—H3120.00
O2—C2—C3121.20 (15)C3—C4—H4120.00
O2—C2—C1118.67 (14)C5—C4—H4120.00
C1—C2—C3120.13 (15)C4—C5—H5120.00
C2—C3—C4120.39 (17)C6—C5—H5120.00
C3—C4—C5120.52 (17)C1—C6—H6119.00
C4—C5—C6119.25 (18)C5—C6—H6119.00
C1—C6—C5122.03 (16)C8—C9—H9120.00
N1—C7—C1116.60 (14)C10—C9—H9120.00
O1—C7—C1121.48 (14)C9—C10—H10120.00
O1—C7—N1121.89 (15)C11—C10—H10120.00
N1—C8—C9124.58 (16)C11—C12—H12120.00
N1—C8—C13116.19 (15)C13—C12—H12120.00
C9—C8—C13119.22 (16)C8—C13—H13120.00
C8—C9—C10119.36 (18)C12—C13—H13120.00
C9—C10—C11120.73 (19)
C8—N1—C7—O10.3 (3)C1—C2—C3—C4−1.4 (3)
C8—N1—C7—C1−177.67 (16)C2—C3—C4—C50.5 (3)
C7—N1—C8—C90.8 (3)C3—C4—C5—C60.8 (3)
C7—N1—C8—C13−179.92 (18)C4—C5—C6—C1−1.2 (3)
C6—C1—C2—O2−179.53 (14)N1—C8—C9—C10179.49 (18)
C6—C1—C2—C30.9 (2)C13—C8—C9—C100.2 (3)
C7—C1—C2—O2−1.1 (2)N1—C8—C13—C12179.81 (19)
C7—C1—C2—C3179.34 (16)C9—C8—C13—C12−0.8 (3)
C2—C1—C6—C50.4 (2)C8—C9—C10—C110.2 (3)
C7—C1—C6—C5−178.18 (16)C9—C10—C11—Cl1−179.98 (19)
C2—C1—C7—O1161.80 (16)C9—C10—C11—C120.1 (4)
C2—C1—C7—N1−20.2 (2)Cl1—C11—C12—C13179.35 (18)
C6—C1—C7—O1−19.8 (2)C10—C11—C12—C13−0.7 (4)
C6—C1—C7—N1158.21 (15)C11—C12—C13—C81.1 (3)
O2—C2—C3—C4179.11 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.84 (2)1.991 (18)2.6588 (19)136.4 (17)
O2—H2···O1i0.82 (2)1.85 (2)2.6582 (17)173 (2)
C9—H9···O10.932.312.895 (2)121

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5690).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Raza, A. R., Danish, M., Tahir, M. N., Nisar, B. & Park, G. (2009). Acta Cryst. E65, o1042. [PMC free article] [PubMed]
  • Raza, A. R., Nisar, B. & Tahir, M. N. (2010a). Acta Cryst. E66, o1852. [PMC free article] [PubMed]
  • Raza, A. R., Nisar, B. & Tahir, M. N. (2010b). Acta Cryst. E66, o2435. [PMC free article] [PubMed]
  • Samanta, K., Chakravarti, B., Mishra, J. K., Dwivedi, S. K. D., Nayak, L. V., Choudhry, P., Bid, H. K., Konwar, R., Chattopadhyay, N. & Panda, G. (2010). Bioorg. Med. Chem. Lett., 20, 283–287. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography