PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1352.
Published online 2010 October 2. doi:  10.1107/S1600536810038298
PMCID: PMC3009057

Bis{2-[3-(dimethyl­ammonio)­propyl­imino­methyl-κN]-6-meth­oxy­phenolato-κO 1}bis­(thio­cyanato-κN)nickel(II)

Abstract

The asymmetric unit of the title complex, [Ni(NCS)2(C13H20N2O2)2], consists of two half-mol­ecules, both of which are completed by crystallographic inversion symmetry (Ni2+ site symmetry = An external file that holds a picture, illustration, etc.
Object name is e-66-m1352-efi1.jpg in both cases). Both metal ions are six-coordinated in distorted trans-NiO2N4 geometries arising from two N,O-bidentate Schiff base ligands and two N-bonded thio­cyanate ions. The mol­ecular conformations are reinforced by two intra­molecular N—H(...)O hydrogen bonds.

Related literature

For related structures and background references, see: Xue et al. (2010a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1352-scheme1.jpg

Experimental

Crystal data

  • [Ni(NCS)2(C13H20N2O2)2]
  • M r = 647.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1352-efi2.jpg
  • a = 16.228 (2) Å
  • b = 15.642 (2) Å
  • c = 13.3912 (18) Å
  • β = 113.132 (2)°
  • V = 3126.0 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.80 mm−1
  • T = 298 K
  • 0.23 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.838, T max = 0.857
  • 17748 measured reflections
  • 6772 independent reflections
  • 4916 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.091
  • S = 1.02
  • 6772 reflections
  • 385 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038298/hb5649sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038298/hb5649Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Top-Class Foundation and the Applied Chemistry Key Laboratory Foundation of Pingdingshan University.

supplementary crystallographic information

Comment

Recently, we have reported a few Schiff base complexes (Xue et al., 2010a,b). In this paper, a new nickel(II) complex with the Schiff base 2-[(3-dimethylammoniopropylimino)methyl]-6-methoxyphenol, is reported.

The complex is a centrosymmetric mononuclear nickel(II) complex, as shown in Fig. 1. The Ni atom, lying on the inversion center, is six-coordinated in an octahedral geometry, with two phenolate O and two imine N atoms from two Schiff base ligands defining the basal plane, and with two thiocyanate N atoms occupying the axial positions. The two amine N atoms are protonated, and form intramolecular N–H···O hydrogen bonds (Table 1) with the phenolate O atoms. The slight distortion of the octahedral coordination can be observed from the coordinate bond lengths and angles (Table 2).

Experimental

3-Methoxysalicylaldehyde (152 mg, 1.0 mmol), N,N-dimethylpropane-1,3-diamine (102 mg, 1.0 mmol), ammonium thiocyanate (76 mg, 1.0 mmol), and nickel acetate tetrahydrate (249 mg, 1.0 mmol) were dissolved in methanol (80 ml). The mixture was stirred for two hours at room temperature. The resulting solution was left in air for a few days, yielding green blocks of (I).

Refinement

H2 and H5A were located from a difference Fourier map and refined isotropically, with N–H distances restrained to 0.90 (1) Å. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The structure of (I) with 30% probability displacement ellipsoids.

Crystal data

[Ni(NCS)2(C13H20N2O2)2]F(000) = 1368
Mr = 647.49Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5211 reflections
a = 16.228 (2) Åθ = 2.6–27.2°
b = 15.642 (2) ŵ = 0.80 mm1
c = 13.3912 (18) ÅT = 298 K
β = 113.132 (2)°Block, green
V = 3126.0 (7) Å30.23 × 0.23 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer6772 independent reflections
Radiation source: fine-focus sealed tube4916 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→20
Tmin = 0.838, Tmax = 0.857k = −19→19
17748 measured reflectionsl = −17→7

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0418P)2 + 0.616P] where P = (Fo2 + 2Fc2)/3
6772 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 0.26 e Å3
2 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.50000.00000.03134 (10)
Ni20.00000.50000.00000.03281 (10)
S10.28158 (5)0.31526 (5)−0.26156 (5)0.0710 (2)
S20.18778 (4)0.75758 (4)0.05566 (5)0.05524 (17)
O10.48274 (9)0.43998 (8)0.12568 (11)0.0399 (3)
O20.54271 (11)0.39569 (10)0.33999 (13)0.0592 (4)
O30.01284 (9)0.51671 (8)0.15603 (11)0.0395 (3)
O4−0.02789 (11)0.52191 (10)0.33375 (13)0.0528 (4)
N10.38379 (10)0.57261 (10)−0.02589 (13)0.0341 (4)
N20.50658 (12)0.73003 (11)−0.11985 (15)0.0408 (4)
N30.41756 (12)0.41330 (11)−0.11307 (15)0.0452 (4)
N40.11950 (10)0.42923 (10)0.05634 (13)0.0347 (4)
N50.00617 (11)0.31873 (10)−0.21919 (14)0.0398 (4)
N60.08080 (12)0.61079 (11)0.00524 (15)0.0443 (4)
C10.37093 (12)0.53225 (12)0.14375 (15)0.0328 (4)
C20.44253 (13)0.47353 (12)0.18471 (16)0.0337 (4)
C30.46936 (14)0.44942 (13)0.29512 (17)0.0408 (5)
C40.42342 (15)0.47622 (14)0.35629 (17)0.0441 (5)
H40.44170.45770.42780.053*
C50.35069 (15)0.53011 (15)0.31371 (18)0.0456 (5)
H50.31950.54730.35560.055*
C60.32498 (13)0.55794 (13)0.20875 (17)0.0395 (5)
H60.27620.59460.17980.047*
C70.62574 (17)0.4410 (2)0.3822 (2)0.0724 (8)
H7A0.63070.47650.32640.109*
H7B0.67440.40090.40670.109*
H7C0.62790.47600.44210.109*
C80.34179 (13)0.57118 (12)0.03718 (16)0.0357 (4)
H80.28630.59820.01190.043*
C90.34050 (14)0.62316 (14)−0.12656 (17)0.0428 (5)
H9A0.27670.6115−0.15680.051*
H9B0.36430.6052−0.17930.051*
C100.35530 (15)0.71901 (14)−0.10719 (19)0.0491 (6)
H10A0.32740.7480−0.17640.059*
H10B0.32460.7375−0.06170.059*
C110.45174 (15)0.74753 (13)−0.05485 (18)0.0472 (5)
H11A0.45290.8085−0.04120.057*
H11B0.47960.71920.01490.057*
C120.60227 (16)0.75222 (18)−0.0561 (2)0.0653 (7)
H12A0.63660.7408−0.09900.098*
H12B0.62500.71840.00890.098*
H12C0.60690.8117−0.03730.098*
C130.47408 (16)0.77696 (15)−0.22516 (18)0.0542 (6)
H13A0.47620.8374−0.21170.081*
H13B0.41350.7602−0.26830.081*
H13C0.51160.7635−0.26340.081*
C140.14218 (13)0.42832 (12)0.24865 (16)0.0359 (5)
C150.06605 (13)0.47581 (12)0.24231 (16)0.0361 (5)
C160.04936 (15)0.48005 (13)0.33849 (17)0.0424 (5)
C170.10847 (17)0.44819 (14)0.43617 (18)0.0512 (6)
H170.09650.45430.49830.061*
C180.18630 (16)0.40673 (14)0.44204 (18)0.0517 (6)
H180.22750.38670.50820.062*
C190.20132 (14)0.39593 (13)0.34964 (17)0.0453 (5)
H190.25210.36630.35330.054*
C20−0.10592 (18)0.46990 (19)0.2910 (2)0.0693 (8)
H20A−0.11030.44530.22340.104*
H20B−0.15800.50420.27900.104*
H20C−0.10220.42510.34160.104*
C210.16576 (13)0.41259 (12)0.15670 (17)0.0376 (5)
H210.22130.38730.17230.045*
C220.16275 (13)0.40526 (13)−0.01820 (17)0.0407 (5)
H22A0.22640.41710.01660.049*
H22B0.13830.4403−0.08310.049*
C230.14924 (14)0.31075 (14)−0.05085 (18)0.0461 (5)
H23A0.18050.2991−0.09800.055*
H23B0.17720.27640.01410.055*
C240.05311 (14)0.28187 (13)−0.10793 (17)0.0448 (5)
H24A0.05200.2200−0.11350.054*
H24B0.02030.2977−0.06390.054*
C250.04371 (16)0.28787 (17)−0.2978 (2)0.0575 (6)
H25A0.03980.2267−0.30230.086*
H25B0.10530.3049−0.27360.086*
H25C0.01020.3121−0.36800.086*
C26−0.09173 (14)0.30137 (17)−0.26210 (19)0.0568 (6)
H26A−0.10170.2408−0.26470.085*
H26B−0.11990.3248−0.33390.085*
H26C−0.11680.3274−0.21540.085*
C270.36096 (14)0.37389 (13)−0.17575 (16)0.0374 (5)
C280.12526 (14)0.67114 (13)0.02399 (16)0.0378 (5)
H20.5041 (18)0.6730 (7)−0.132 (2)0.080*
H5A0.0166 (17)0.3749 (7)−0.207 (2)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0356 (2)0.02943 (18)0.03020 (19)−0.00061 (14)0.01426 (15)−0.00052 (14)
Ni20.03240 (19)0.03016 (18)0.02986 (19)0.00455 (14)0.00575 (15)−0.00108 (14)
S10.0568 (4)0.1032 (6)0.0513 (4)−0.0330 (4)0.0194 (3)−0.0272 (4)
S20.0585 (4)0.0471 (3)0.0575 (4)−0.0116 (3)0.0200 (3)0.0014 (3)
O10.0518 (9)0.0349 (7)0.0406 (8)0.0074 (6)0.0264 (7)0.0048 (6)
O20.0665 (11)0.0570 (10)0.0538 (10)0.0182 (9)0.0232 (9)0.0186 (8)
O30.0434 (8)0.0371 (7)0.0321 (7)0.0099 (6)0.0084 (6)−0.0007 (6)
O40.0635 (11)0.0478 (9)0.0506 (10)0.0036 (8)0.0261 (8)−0.0062 (7)
N10.0351 (9)0.0340 (8)0.0331 (9)−0.0007 (7)0.0133 (7)0.0008 (7)
N20.0445 (10)0.0334 (9)0.0467 (10)0.0033 (8)0.0204 (9)0.0088 (8)
N30.0477 (11)0.0399 (10)0.0444 (10)−0.0053 (8)0.0141 (9)−0.0058 (8)
N40.0327 (9)0.0303 (8)0.0365 (9)0.0017 (7)0.0087 (7)−0.0034 (7)
N50.0380 (9)0.0345 (9)0.0427 (10)0.0024 (8)0.0113 (8)−0.0082 (8)
N60.0416 (10)0.0398 (10)0.0475 (11)0.0034 (8)0.0133 (9)−0.0019 (8)
C10.0340 (10)0.0334 (9)0.0331 (10)−0.0070 (8)0.0153 (9)−0.0046 (8)
C20.0366 (11)0.0312 (9)0.0362 (11)−0.0070 (8)0.0174 (9)−0.0030 (8)
C30.0460 (12)0.0382 (11)0.0384 (12)−0.0023 (9)0.0168 (10)0.0028 (9)
C40.0545 (14)0.0480 (12)0.0317 (11)−0.0076 (11)0.0189 (10)0.0008 (9)
C50.0523 (14)0.0513 (12)0.0427 (13)−0.0087 (11)0.0288 (11)−0.0066 (11)
C60.0360 (11)0.0429 (11)0.0424 (12)−0.0048 (9)0.0184 (10)−0.0035 (10)
C70.0526 (16)0.108 (2)0.0479 (15)0.0185 (16)0.0110 (13)−0.0012 (15)
C80.0307 (10)0.0389 (11)0.0377 (11)0.0003 (8)0.0136 (9)−0.0002 (9)
C90.0349 (11)0.0547 (13)0.0362 (11)0.0008 (10)0.0110 (9)0.0086 (10)
C100.0525 (14)0.0508 (13)0.0524 (14)0.0144 (11)0.0296 (11)0.0155 (11)
C110.0639 (15)0.0369 (11)0.0480 (13)0.0042 (10)0.0297 (12)0.0034 (10)
C120.0496 (14)0.0718 (17)0.0665 (17)−0.0102 (13)0.0141 (13)0.0197 (14)
C130.0613 (15)0.0538 (14)0.0496 (14)0.0080 (12)0.0240 (12)0.0166 (11)
C140.0361 (11)0.0297 (10)0.0343 (11)−0.0036 (8)0.0056 (9)0.0014 (8)
C150.0415 (11)0.0263 (9)0.0331 (11)−0.0025 (8)0.0068 (9)−0.0021 (8)
C160.0512 (13)0.0325 (10)0.0416 (12)−0.0030 (9)0.0162 (11)−0.0034 (9)
C170.0718 (16)0.0454 (13)0.0335 (12)−0.0090 (12)0.0176 (12)−0.0002 (10)
C180.0560 (14)0.0461 (13)0.0386 (13)−0.0057 (11)0.0028 (11)0.0095 (10)
C190.0406 (12)0.0386 (11)0.0443 (13)−0.0019 (9)0.0035 (10)0.0066 (10)
C200.0624 (17)0.0702 (17)0.086 (2)−0.0055 (14)0.0402 (16)−0.0064 (16)
C210.0303 (10)0.0284 (9)0.0460 (12)0.0010 (8)0.0064 (9)0.0015 (9)
C220.0343 (11)0.0443 (12)0.0393 (11)0.0029 (9)0.0098 (9)−0.0033 (9)
C230.0415 (12)0.0449 (12)0.0443 (12)0.0087 (10)0.0086 (10)−0.0061 (10)
C240.0496 (13)0.0352 (11)0.0458 (12)0.0050 (10)0.0145 (10)−0.0024 (9)
C250.0553 (15)0.0642 (16)0.0575 (15)0.0057 (12)0.0269 (12)−0.0116 (13)
C260.0411 (12)0.0712 (16)0.0525 (14)−0.0069 (12)0.0123 (11)−0.0120 (13)
C270.0397 (11)0.0398 (11)0.0367 (11)0.0031 (9)0.0194 (10)0.0008 (9)
C280.0386 (11)0.0380 (11)0.0357 (11)0.0089 (9)0.0134 (9)0.0035 (9)

Geometric parameters (Å, °)

Ni1—O12.0403 (13)C7—H7B0.9600
Ni1—O1i2.0403 (13)C7—H7C0.9600
Ni1—N3i2.0809 (18)C8—H80.9300
Ni1—N32.0809 (18)C9—C101.524 (3)
Ni1—N12.1102 (16)C9—H9A0.9700
Ni1—N1i2.1102 (16)C9—H9B0.9700
Ni2—O3ii2.0336 (14)C10—C111.509 (3)
Ni2—O32.0336 (14)C10—H10A0.9700
Ni2—N42.0990 (15)C10—H10B0.9700
Ni2—N4ii2.0990 (15)C11—H11A0.9700
Ni2—N62.1577 (19)C11—H11B0.9700
Ni2—N6ii2.1577 (19)C12—H12A0.9600
S1—C271.630 (2)C12—H12B0.9600
S2—C281.643 (2)C12—H12C0.9600
O1—C21.316 (2)C13—H13A0.9600
O2—C31.386 (3)C13—H13B0.9600
O2—C71.428 (3)C13—H13C0.9600
O3—C151.306 (2)C14—C191.410 (3)
O4—C161.394 (3)C14—C151.415 (3)
O4—C201.422 (3)C14—C211.447 (3)
N1—C81.277 (2)C15—C161.418 (3)
N1—C91.481 (2)C16—C171.376 (3)
N2—C121.489 (3)C17—C181.394 (3)
N2—C131.490 (3)C17—H170.9300
N2—C111.494 (3)C18—C191.362 (3)
N2—H20.906 (10)C18—H180.9300
N3—C271.150 (2)C19—H190.9300
N4—C211.283 (2)C20—H20A0.9600
N4—C221.477 (3)C20—H20B0.9600
N5—C261.487 (3)C20—H20C0.9600
N5—C251.488 (3)C21—H210.9300
N5—C241.497 (3)C22—C231.533 (3)
N5—H5A0.897 (10)C22—H22A0.9700
N6—C281.154 (3)C22—H22B0.9700
C1—C61.409 (3)C23—C241.512 (3)
C1—C21.412 (3)C23—H23A0.9700
C1—C81.450 (3)C23—H23B0.9700
C2—C31.418 (3)C24—H24A0.9700
C3—C41.372 (3)C24—H24B0.9700
C4—C51.378 (3)C25—H25A0.9600
C4—H40.9300C25—H25B0.9600
C5—C61.371 (3)C25—H25C0.9600
C5—H50.9300C26—H26A0.9600
C6—H60.9300C26—H26B0.9600
C7—H7A0.9600C26—H26C0.9600
O1—Ni1—O1i180.00 (7)C10—C9—H9B109.1
O1—Ni1—N3i87.54 (6)H9A—C9—H9B107.8
O1i—Ni1—N3i92.46 (6)C11—C10—C9115.79 (18)
O1—Ni1—N392.46 (6)C11—C10—H10A108.3
O1i—Ni1—N387.54 (6)C9—C10—H10A108.3
N3i—Ni1—N3180.00 (7)C11—C10—H10B108.3
O1—Ni1—N188.84 (6)C9—C10—H10B108.3
O1i—Ni1—N191.16 (6)H10A—C10—H10B107.4
N3i—Ni1—N192.66 (6)N2—C11—C10114.93 (18)
N3—Ni1—N187.34 (6)N2—C11—H11A108.5
O1—Ni1—N1i91.16 (6)C10—C11—H11A108.5
O1i—Ni1—N1i88.84 (6)N2—C11—H11B108.5
N3i—Ni1—N1i87.34 (6)C10—C11—H11B108.5
N3—Ni1—N1i92.66 (6)H11A—C11—H11B107.5
N1—Ni1—N1i180.00 (7)N2—C12—H12A109.5
O3ii—Ni2—O3180.000 (13)N2—C12—H12B109.5
O3ii—Ni2—N490.50 (6)H12A—C12—H12B109.5
O3—Ni2—N489.50 (6)N2—C12—H12C109.5
O3ii—Ni2—N4ii89.50 (6)H12A—C12—H12C109.5
O3—Ni2—N4ii90.50 (6)H12B—C12—H12C109.5
N4—Ni2—N4ii180.0N2—C13—H13A109.5
O3ii—Ni2—N687.27 (6)N2—C13—H13B109.5
O3—Ni2—N692.73 (6)H13A—C13—H13B109.5
N4—Ni2—N687.02 (6)N2—C13—H13C109.5
N4ii—Ni2—N692.98 (6)H13A—C13—H13C109.5
O3ii—Ni2—N6ii92.73 (6)H13B—C13—H13C109.5
O3—Ni2—N6ii87.27 (6)C19—C14—C15119.7 (2)
N4—Ni2—N6ii92.98 (6)C19—C14—C21116.57 (19)
N4ii—Ni2—N6ii87.02 (6)C15—C14—C21123.70 (17)
N6—Ni2—N6ii180.0O3—C15—C14124.64 (19)
C2—O1—Ni1124.97 (12)O3—C15—C16118.99 (19)
C3—O2—C7112.77 (19)C14—C15—C16116.35 (18)
C15—O3—Ni2127.67 (13)C17—C16—O4119.5 (2)
C16—O4—C20113.10 (18)C17—C16—C15122.4 (2)
C8—N1—C9115.21 (16)O4—C16—C15118.04 (19)
C8—N1—Ni1123.83 (13)C16—C17—C18120.0 (2)
C9—N1—Ni1120.71 (13)C16—C17—H17120.0
C12—N2—C13109.21 (17)C18—C17—H17120.0
C12—N2—C11110.42 (18)C19—C18—C17119.2 (2)
C13—N2—C11112.99 (17)C19—C18—H18120.4
C12—N2—H2107.2 (17)C17—C18—H18120.4
C13—N2—H2109.6 (18)C18—C19—C14122.0 (2)
C11—N2—H2107.2 (17)C18—C19—H19119.0
C27—N3—Ni1168.91 (17)C14—C19—H19119.0
C21—N4—C22114.76 (16)O4—C20—H20A109.5
C21—N4—Ni2124.16 (14)O4—C20—H20B109.5
C22—N4—Ni2120.55 (12)H20A—C20—H20B109.5
C26—N5—C25109.85 (17)O4—C20—H20C109.5
C26—N5—C24111.28 (18)H20A—C20—H20C109.5
C25—N5—C24112.90 (17)H20B—C20—H20C109.5
C26—N5—H5A110.2 (17)N4—C21—C14127.99 (18)
C25—N5—H5A110.1 (18)N4—C21—H21116.0
C24—N5—H5A102.3 (18)C14—C21—H21116.0
C28—N6—Ni2169.71 (18)N4—C22—C23112.64 (17)
C6—C1—C2120.01 (18)N4—C22—H22A109.1
C6—C1—C8116.18 (18)C23—C22—H22A109.1
C2—C1—C8123.79 (18)N4—C22—H22B109.1
O1—C2—C1123.56 (18)C23—C22—H22B109.1
O1—C2—C3119.90 (18)H22A—C22—H22B107.8
C1—C2—C3116.52 (18)C24—C23—C22115.85 (17)
C4—C3—O2120.12 (19)C24—C23—H23A108.3
C4—C3—C2121.65 (19)C22—C23—H23A108.3
O2—C3—C2118.21 (19)C24—C23—H23B108.3
C3—C4—C5121.2 (2)C22—C23—H23B108.3
C3—C4—H4119.4H23A—C23—H23B107.4
C5—C4—H4119.4N5—C24—C23114.12 (18)
C6—C5—C4119.0 (2)N5—C24—H24A108.7
C6—C5—H5120.5C23—C24—H24A108.7
C4—C5—H5120.5N5—C24—H24B108.7
C5—C6—C1121.4 (2)C23—C24—H24B108.7
C5—C6—H6119.3H24A—C24—H24B107.6
C1—C6—H6119.3N5—C25—H25A109.5
O2—C7—H7A109.5N5—C25—H25B109.5
O2—C7—H7B109.5H25A—C25—H25B109.5
H7A—C7—H7B109.5N5—C25—H25C109.5
O2—C7—H7C109.5H25A—C25—H25C109.5
H7A—C7—H7C109.5H25B—C25—H25C109.5
H7B—C7—H7C109.5N5—C26—H26A109.5
N1—C8—C1127.30 (18)N5—C26—H26B109.5
N1—C8—H8116.3H26A—C26—H26B109.5
C1—C8—H8116.3N5—C26—H26C109.5
N1—C9—C10112.56 (17)H26A—C26—H26C109.5
N1—C9—H9A109.1H26B—C26—H26C109.5
C10—C9—H9A109.1N3—C27—S1178.0 (2)
N1—C9—H9B109.1N6—C28—S2177.5 (2)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.91 (1)1.78 (1)2.668 (2)167 (3)
N5—H5A···O3ii0.90 (1)1.96 (2)2.764 (2)149 (2)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5649).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xue, L.-W., Zhao, G.-Q., Han, Y.-J., Chen, L.-H. & Peng, Q.-L. (2010b). Acta Cryst. E66, m1274. [PMC free article] [PubMed]
  • Xue, L.-W., Zhao, G.-Q., Han, Y.-J. & Feng, Y.-X. (2010a). Acta Cryst. E66, m1172–m1173. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography