PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2924.
Published online 2010 October 23. doi:  10.1107/S1600536810041875
PMCID: PMC3009056

Benzoic acid–4-{(1E)-[(E)-2-(pyridin-4-yl­methyl­idene)hydrazin-1-yl­idene]meth­yl}pyridine (2/1)

Abstract

In the title co-crystal, C12H10N4·2C7H6O2, the complete 4-pyridine­aldazine mol­ecule is generated by a crystallographic centre of inversion. In the crystal, mol­ecules are connected into a three component aggregate via O—H(...)N hydrogen bonds. As both the benzoic acid [O—C—C—C torsion angle = 174.8 (2)°] and 4-pyridine­aldazine (r.m.s. deviation of the 16 non-H atoms = 0.041 Å) mol­ecules are almost planar, the resulting three-component aggregate is essentially planar. The crystal packing comprises layers of the three-component aggregates of alternating orientation stacked along the b axis; the connections between the mol­ecules are of the types C—H(...)π and π–π [pyridine–benzene centroid–centroid distance = 3.787 (4) Å].

Related literature

For related studies on co-crystal formation involving the isomeric n-pyridine­aldazines, see: Broker et al. (2008 [triangle]); Arman et al. (2010a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2924-scheme1.jpg

Experimental

Crystal data

  • C12H10N4·2C7H6O2
  • M r = 454.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2924-efi1.jpg
  • a = 6.873 (6) Å
  • b = 26.059 (19) Å
  • c = 7.117 (6) Å
  • β = 116.245 (13)°
  • V = 1143.3 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 98 K
  • 0.40 × 0.26 × 0.08 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • 6111 measured reflections
  • 1956 independent reflections
  • 1620 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.191
  • S = 1.12
  • 1956 reflections
  • 157 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041875/hb5684sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041875/hb5684Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In connection with co-crystallization studies of the isomeric n-pyridinealdazines (Broker et al., 2008; Arman et al., 2010a,b), the co-crystallization of benzoic acid and 4-pyridinealdazine was investigated. This lead to the isolation of the title 2/1 co-crystal, (I).

The asymmetric unit in (I) comprises a molecule of benzoic acid, Fig. 1, and half a molecule of 4-pyridinealdazine, with the latter disposed about a centre of inversion, Fig. 2. The constituents of (I) are connected by O—H···N hydrogen bonds, Table 1, to generate a centrosymmetric three component aggregate. The carboxylic acid group is co-planar with the benzene ring to which it is connected [the O1—C1—C2—C3 torsion angle is 174.8 (2) °] and, similarly, the 4-pyridinealdazine molecule is planar with the r.m.s. deviation of the 16 non-hydrogen atoms being 0.041 Å [maximum deviation = 0.075 (3) Å for the methylene-C13 atom]. Accordingly, the three component aggregate is essentially planar.

In the crystal packing, layers of three component aggregates of alternating orientation stack along the b axis, Fig. 3. Connections between the molecules are of the type C—H···π, Table 1, and π–π [ring centroid(N1,C8–C12)···ring centroid(C2–C7) = 3.787 (4) Å].

Experimental

Yellow blocks of (I) were isolated from the 2/1 co-crystallization of 2-phenylacetic acid (Sigma Aldrich) and 4-[(1E)-[(E)-2-(pyridin-4-ylmethylidene)hydrazin-1-ylidene]methyl]pyridine(Sigma Aldrich), in ethanol; m. pt. 395–397 K.

IR assignment (cm-1): 2923 ν(C—H); 1693 ν(C═O); 1602 ν(C═N); 1492, 1453, 1409 ν(C—C(aromatic)); 1306 ν(C—N); 817, 716 δ(C—H).

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of benzoic acid found in the structure of (I) showing displacement ellipsoids at the 50% probability level
Fig. 2.
Molecular structure of 4-pyridinealdazine found in the structure of (I) showing displacement ellipsoids at the 50% probability level. The molecule is disposed about a centre of inversion with i = 1 - x, -y, 1 - z.
Fig. 3.
A view in projection down the a axis showing the stacking of layers comprising three component aggregates along b. The O—H···N, C—H···π and π–π interactions ...

Crystal data

C12H10N4·2C7H6O2F(000) = 476
Mr = 454.48Dx = 1.320 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4161 reflections
a = 6.873 (6) Åθ = 3.3–40.2°
b = 26.059 (19) ŵ = 0.09 mm1
c = 7.117 (6) ÅT = 98 K
β = 116.245 (13)°Block, yellow
V = 1143.3 (16) Å30.40 × 0.26 × 0.08 mm
Z = 2

Data collection

Rigaku AFC12K/SATURN724 diffractometer1620 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
graphiteθmax = 25.0°, θmin = 3.1°
ω scansh = −8→8
6111 measured reflectionsk = −30→30
1956 independent reflectionsl = −8→6

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.083P)2 + 0.7947P] where P = (Fo2 + 2Fc2)/3
1956 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = −0.28 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2366 (3)0.14824 (8)0.4031 (3)0.0367 (5)
H1o0.254 (6)0.1339 (13)0.305 (4)0.055*
O2−0.0291 (3)0.09135 (7)0.3447 (3)0.0348 (5)
C10.0732 (4)0.12953 (10)0.4330 (4)0.0279 (6)
C20.0247 (4)0.15989 (10)0.5862 (4)0.0272 (6)
C3−0.1544 (5)0.14691 (10)0.6194 (4)0.0294 (6)
H3−0.24280.11850.54800.035*
C4−0.2032 (5)0.17572 (11)0.7573 (4)0.0363 (7)
H4−0.32650.16730.77840.044*
C5−0.0723 (6)0.21684 (12)0.8644 (5)0.0422 (8)
H5−0.10610.23630.95910.051*
C60.1078 (6)0.22960 (12)0.8335 (5)0.0415 (8)
H60.19740.25760.90740.050*
C70.1563 (5)0.20132 (11)0.6942 (4)0.0334 (7)
H70.27880.21010.67230.040*
N10.2915 (4)0.09852 (9)1.1065 (3)0.0308 (6)
N20.5060 (4)0.01762 (9)0.5783 (3)0.0316 (6)
C80.3397 (4)0.03986 (10)0.8005 (4)0.0268 (6)
C90.1647 (4)0.03201 (10)0.8464 (4)0.0285 (6)
H90.05940.00650.77430.034*
C100.1466 (5)0.06209 (10)0.9991 (4)0.0312 (7)
H100.02640.05671.02880.037*
C110.4597 (4)0.10580 (11)1.0616 (4)0.0293 (6)
H110.56320.13151.13650.035*
C120.4898 (5)0.07771 (10)0.9114 (4)0.0297 (6)
H120.61100.08420.88430.036*
C130.3593 (4)0.00791 (10)0.6385 (4)0.0278 (6)
H130.2627−0.02000.57830.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0403 (12)0.0415 (12)0.0340 (12)−0.0088 (9)0.0215 (9)−0.0103 (9)
O20.0347 (11)0.0351 (11)0.0342 (11)−0.0036 (9)0.0150 (9)−0.0074 (8)
C10.0293 (14)0.0281 (14)0.0218 (14)0.0032 (11)0.0073 (11)0.0008 (10)
C20.0322 (14)0.0282 (14)0.0206 (13)0.0035 (11)0.0112 (11)0.0028 (10)
C30.0353 (15)0.0253 (14)0.0256 (14)0.0018 (11)0.0116 (11)0.0043 (11)
C40.0401 (17)0.0392 (16)0.0346 (16)0.0054 (13)0.0210 (13)0.0058 (12)
C50.059 (2)0.0381 (17)0.0346 (17)0.0030 (15)0.0255 (15)−0.0042 (13)
C60.0503 (19)0.0390 (17)0.0370 (17)−0.0072 (14)0.0210 (14)−0.0098 (13)
C70.0371 (16)0.0337 (16)0.0293 (15)−0.0027 (12)0.0145 (12)−0.0005 (11)
N10.0353 (13)0.0328 (13)0.0241 (12)0.0048 (10)0.0130 (10)0.0024 (9)
N20.0405 (14)0.0303 (13)0.0235 (12)0.0005 (10)0.0138 (11)−0.0029 (9)
C80.0301 (14)0.0278 (14)0.0211 (13)0.0076 (11)0.0100 (11)0.0044 (10)
C90.0313 (14)0.0321 (14)0.0198 (13)0.0020 (11)0.0091 (11)0.0013 (10)
C100.0295 (15)0.0341 (15)0.0286 (15)0.0027 (11)0.0115 (12)0.0031 (11)
C110.0300 (14)0.0302 (14)0.0250 (14)0.0018 (11)0.0098 (11)0.0002 (10)
C120.0298 (14)0.0323 (15)0.0263 (14)0.0024 (11)0.0118 (12)0.0011 (11)
C130.0328 (14)0.0246 (13)0.0234 (14)0.0025 (11)0.0100 (11)0.0022 (10)

Geometric parameters (Å, °)

O1—C11.325 (3)N1—C111.342 (4)
O1—H1O0.85 (3)N1—C101.343 (4)
O2—C11.220 (3)N2—C131.283 (4)
C1—C21.499 (4)N2—N2i1.418 (4)
C2—C31.395 (4)C8—C121.393 (4)
C2—C71.400 (4)C8—C91.394 (4)
C3—C41.389 (4)C8—C131.476 (4)
C3—H30.9500C9—C101.390 (4)
C4—C51.390 (4)C9—H90.9500
C4—H40.9500C10—H100.9500
C5—C61.390 (5)C11—C121.384 (4)
C5—H50.9500C11—H110.9500
C6—C71.389 (4)C12—H120.9500
C6—H60.9500C13—H130.9500
C7—H70.9500
C1—O1—H1o114 (3)C2—C7—H7120.0
O2—C1—O1123.6 (3)C11—N1—C10117.7 (2)
O2—C1—C2122.8 (3)C13—N2—N2i110.7 (3)
O1—C1—C2113.6 (2)C12—C8—C9118.1 (2)
C3—C2—C7119.9 (3)C12—C8—C13122.8 (3)
C3—C2—C1119.5 (2)C9—C8—C13119.1 (2)
C7—C2—C1120.6 (3)C10—C9—C8119.0 (3)
C4—C3—C2119.7 (3)C10—C9—H9120.5
C4—C3—H3120.1C8—C9—H9120.5
C2—C3—H3120.1N1—C10—C9122.9 (3)
C3—C4—C5120.3 (3)N1—C10—H10118.5
C3—C4—H4119.8C9—C10—H10118.5
C5—C4—H4119.8N1—C11—C12123.2 (3)
C6—C5—C4120.2 (3)N1—C11—H11118.4
C6—C5—H5119.9C12—C11—H11118.4
C4—C5—H5119.9C11—C12—C8119.1 (3)
C5—C6—C7119.8 (3)C11—C12—H12120.5
C5—C6—H6120.1C8—C12—H12120.5
C7—C6—H6120.1N2—C13—C8120.4 (2)
C6—C7—C2120.1 (3)N2—C13—H13119.8
C6—C7—H7120.0C8—C13—H13119.8
O2—C1—C2—C3−5.1 (4)C12—C8—C9—C100.2 (4)
O1—C1—C2—C3174.8 (2)C13—C8—C9—C10180.0 (2)
O2—C1—C2—C7175.5 (2)C11—N1—C10—C90.3 (4)
O1—C1—C2—C7−4.6 (4)C8—C9—C10—N1−0.4 (4)
C7—C2—C3—C41.0 (4)C10—N1—C11—C120.0 (4)
C1—C2—C3—C4−178.4 (2)N1—C11—C12—C8−0.1 (4)
C2—C3—C4—C5−1.0 (4)C9—C8—C12—C110.1 (4)
C3—C4—C5—C60.3 (4)C13—C8—C12—C11−179.7 (2)
C4—C5—C6—C70.3 (5)N2i—N2—C13—C8−179.7 (2)
C5—C6—C7—C2−0.3 (5)C12—C8—C13—N2−7.2 (4)
C3—C2—C7—C6−0.3 (4)C9—C8—C13—N2173.0 (2)
C1—C2—C7—C6179.1 (2)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N1ii0.85 (3)1.80 (3)2.642 (4)175 (4)
C6—H6···Cg1iii0.952.643.540 (5)159

Symmetry codes: (ii) x, y, z−1; (iii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5684).

References

  • Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2356. [PMC free article] [PubMed]
  • Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2629. [PMC free article] [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography