PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1465.
Published online 2010 October 23. doi:  10.1107/S1600536810042650
PMCID: PMC3009053

(μ-4,4′-Bipyridine-κ2 N:N′)bis­[bis­(N,N-dimethyl­dithio­carbamato-κ2 S,S′)zinc(II)]

Abstract

The title dinuclear ZnII complex, [Zn2(C3H6NS2)4(C10H8N2)], is centrosymmetric; the mid-point of the C—C bond linking the two pyridine rings is located on an inversion center. The pyridine N atom coordinates to the ZnII cation, which is also chelated by two dimethyl­dithio­carbamate anions, giving a trigonal-bipyramidal ZnNS4 geometry. Weak inter­molecular C—H(...)S hydrogen bonding is present in the crystal structure.

Related literature

Dialkyl­dithio­carbamates have strong metal-binding properties as well as biological functions, see: Jian et al. (2002 [triangle]); Arora et al. (2003 [triangle]); Hogarth & Richards (2006 [triangle]). For related zinc(II) dithio­carbamate compounds, see: Lai et al. (2002 [triangle]); Chen et al. (2006 [triangle]); Benson et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1465-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C3H6NS2)4(C10H8N2)]
  • M r = 767.76
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1465-efi1.jpg
  • a = 8.0490 (8) Å
  • b = 13.8770 (14) Å
  • c = 14.8134 (14) Å
  • β = 100.070 (1)°
  • V = 1629.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.01 mm−1
  • T = 173 K
  • 0.34 × 0.26 × 0.13 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.540, T max = 0.770
  • 14059 measured reflections
  • 3754 independent reflections
  • 3205 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.101
  • S = 1.04
  • 3754 reflections
  • 170 parameters
  • H-atom parameters constrained
  • Δρmax = 1.21 e Å−3
  • Δρmin = −1.95 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042650/xu5042sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042650/xu5042Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the National Natural Science Foundation of China (20971075), the ‘Qianjiang Talent’ Projects of Zhejiang Province (2009R10032), the Program for Innovative Research Teams of Ningbo Novel Photoelectric Materials and Devices (2009B21007) and the K. C. Wong Magna Fund in Ningbo University.

supplementary crystallographic information

Comment

Dialkyldithiocarbamates, (R2dtc) (where R is an alkyl group such as methyl, ethyl or propyl), have strong metal-binding properties as well as biological functions (Jian et al., 2002; Arora et al., 2003; Hogarth & Richards, 2006). Crystal engineering studies of zinc(II) dithiocarbamates (-S2CNR2) are less well developed (Lai et al., 2002; Chen et al., 2006; Benson et al., 2007), this is likely due to the stronger chelating ability of the dithiocarbamate ligand which tends to preclude incorporation of multiple bridging ligands within the Zn atom coordination sphere. Here, we report the crystal structure of the title zinc complex with 4,4'-bipy and dimethyldithiocarbamate (Me2dtc), [Zn2(C3H6NS2)4(C10H8N2)], (I).

Complex (I) is a binuclear structure, in which Zn1A is symmetrical component related by Zn1 (Symmetry code: -x, y + 1/2, -z + 3/2), and the two Zn2+ ions possess the same coordination environment (Fig. 1). The Zn2+ ion adopts a distorted square-pyramidal coordination geometry comprising two S,S'- bidentate dimethyldithiocarbamate (Me2dtc) ligands, one N atom from 4,4'-bipy ligand, the N atom in the apical site, Zn—O distances ranging from 2.349 to 2.624 Å and Cd –N distance being 2.064 Å. In the crystal, the molecules are generate to a one-dimensional chain, which is further extended into two-dimensional supramolecular network via weak C—H···S contacts (Fig. 2), and finally assembled into three-dimensional supramolecular network by C—H···π interactions (Fig. 3).

Experimental

Tetramethylthiuram monosulfide (5.0 mg, 0.024 mmol) dissolved in N,N-dimethylformamide (DMF) (2 ml) was mixed with a DMF solution (1 ml) of 4,4'-bipy (2.38 mg, 0.012 mmol) and stirred for 20 min at room temperature. A DMF solution (0.2 ml) of Zn(NO3)2.6H2O (3.57 mg, 0.012 mmol) was then added dropwise and the mixture was allowed to react for 15 min. The solution was left at room temperature to allow slow evaporation. After a few days, pale yellow block crystals of (I) were obtained from the mother liquor.

Refinement

H atoms were placed in calculated positions and treated using a riding-model approximation with C–H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Figures

Fig. 1.
The molcular structure of (I) showing displacement ellipsoids at the 30% probability level.
Fig. 2.
Two-dimensional supramolecular framework for (I) by C—H···S interactions (orange dashed lines).
Fig. 3.
Unit-cell contents for (I) viewed in projection down the b axis.

Crystal data

[Zn2(C3H6NS2)4(C10H8N2)]F(000) = 788
Mr = 767.76Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14059 reflections
a = 8.0490 (8) Åθ = 2.0–27.5°
b = 13.8770 (14) ŵ = 2.01 mm1
c = 14.8134 (14) ÅT = 173 K
β = 100.070 (1)°Block, yellow
V = 1629.1 (3) Å30.34 × 0.26 × 0.13 mm
Z = 2

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3754 independent reflections
Radiation source: fine-focus sealed tube3205 reflections with I > 2σ(I)
graphiteRint = 0.044
[var phi] and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→10
Tmin = 0.540, Tmax = 0.770k = −18→15
14059 measured reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0365P)2 + 3.8184P] where P = (Fo2 + 2Fc2)/3
3754 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = −1.95 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.13314 (4)0.27435 (3)0.24330 (2)0.02256 (11)
S10.08181 (9)0.16003 (5)0.10290 (5)0.02256 (11)
S2−0.12799 (10)0.31820 (6)0.15575 (6)0.02636 (18)
S30.39861 (9)0.33093 (6)0.22187 (5)0.02260 (17)
S40.21808 (10)0.41611 (6)0.35942 (6)0.02694 (18)
C1−0.0291 (4)0.1060 (2)0.3154 (2)0.0286 (7)
H1A−0.08870.10490.25410.034*
C2−0.0689 (4)0.0385 (2)0.3764 (2)0.0292 (7)
H2A−0.1562−0.00690.35700.035*
C30.0183 (4)0.0363 (2)0.46632 (19)0.0183 (6)
C40.1429 (4)0.1065 (2)0.4901 (2)0.0236 (6)
H4A0.20650.10840.55040.028*
C50.1731 (4)0.1731 (2)0.4255 (2)0.0235 (6)
H5A0.25680.22090.44340.028*
C6−0.1905 (5)0.1389 (3)−0.0636 (3)0.0444 (10)
H6A−0.07510.1136−0.05030.067*
H6B−0.21230.1658−0.12570.067*
H6C−0.27060.0867−0.05910.067*
C7−0.3640 (5)0.2736 (4)−0.0185 (3)0.0495 (11)
H7A−0.40420.28950.03850.074*
H7B−0.45140.2375−0.05910.074*
H7C−0.33870.3332−0.04890.074*
C8−0.0971 (4)0.2285 (2)0.0785 (2)0.0230 (6)
C90.6095 (5)0.5119 (3)0.2449 (3)0.0372 (8)
H9A0.59710.46090.19850.056*
H9B0.72110.50720.28360.056*
H9C0.59760.57500.21470.056*
C100.4667 (5)0.5812 (3)0.3652 (3)0.0362 (8)
H10A0.36680.57230.39390.054*
H10B0.45700.64210.33120.054*
H10C0.56800.58250.41270.054*
C110.3763 (4)0.4248 (2)0.2965 (2)0.0206 (6)
N10.0906 (3)0.17348 (17)0.33906 (17)0.0203 (5)
N2−0.2105 (3)0.2147 (2)0.0027 (2)0.0331 (7)
N30.4789 (3)0.50091 (19)0.30182 (18)0.0255 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02293 (17)0.02255 (18)0.02164 (18)−0.00291 (12)0.00229 (12)0.00392 (12)
S10.02293 (17)0.02255 (18)0.02164 (18)−0.00291 (12)0.00229 (12)0.00392 (12)
S20.0227 (4)0.0276 (4)0.0287 (4)0.0040 (3)0.0042 (3)0.0005 (3)
S30.0212 (3)0.0237 (4)0.0230 (4)−0.0016 (3)0.0042 (3)−0.0034 (3)
S40.0300 (4)0.0249 (4)0.0284 (4)−0.0040 (3)0.0119 (3)−0.0024 (3)
C10.0389 (18)0.0250 (16)0.0183 (15)−0.0113 (13)−0.0045 (13)0.0017 (12)
C20.0391 (18)0.0238 (16)0.0216 (15)−0.0152 (14)−0.0032 (13)0.0036 (12)
C30.0251 (14)0.0133 (13)0.0171 (13)−0.0003 (11)0.0055 (11)−0.0020 (11)
C40.0269 (15)0.0259 (16)0.0167 (14)−0.0071 (12)0.0002 (11)0.0008 (12)
C50.0240 (14)0.0245 (16)0.0217 (15)−0.0074 (12)0.0032 (12)−0.0016 (12)
C60.039 (2)0.065 (3)0.0268 (18)−0.0130 (19)0.0011 (15)−0.0150 (18)
C70.0289 (19)0.072 (3)0.043 (2)0.0039 (19)−0.0056 (17)0.006 (2)
C80.0222 (14)0.0263 (16)0.0213 (15)−0.0054 (12)0.0057 (11)0.0024 (12)
C90.0364 (18)0.036 (2)0.043 (2)−0.0150 (15)0.0175 (16)−0.0078 (16)
C100.042 (2)0.0242 (17)0.045 (2)−0.0088 (15)0.0146 (16)−0.0106 (15)
C110.0202 (13)0.0212 (14)0.0190 (14)0.0016 (11)−0.0004 (11)0.0035 (11)
N10.0254 (12)0.0168 (12)0.0186 (12)−0.0027 (10)0.0034 (10)0.0014 (9)
N20.0236 (13)0.0464 (18)0.0279 (15)−0.0042 (12)0.0005 (11)0.0005 (13)
N30.0268 (13)0.0219 (13)0.0290 (14)−0.0045 (10)0.0082 (11)−0.0022 (11)

Geometric parameters (Å, °)

Zn1—N12.064 (2)C5—H5A0.9500
Zn1—S12.5909 (9)C6—N21.467 (5)
Zn1—S22.3488 (9)C6—H6A0.9800
Zn1—S32.3495 (8)C6—H6B0.9800
Zn1—S42.6239 (9)C6—H6C0.9800
S1—C81.710 (3)C7—N21.468 (5)
S2—C81.738 (3)C7—H7A0.9800
S3—C111.738 (3)C7—H7B0.9800
S4—C111.708 (3)C7—H7C0.9800
C1—N11.345 (4)C8—N21.331 (4)
C1—C21.378 (4)C9—N31.466 (4)
C1—H1A0.9500C9—H9A0.9800
C2—C31.393 (4)C9—H9B0.9800
C2—H2A0.9500C9—H9C0.9800
C3—C41.398 (4)C10—N31.471 (4)
C3—C3i1.483 (6)C10—H10A0.9800
C4—C51.383 (4)C10—H10B0.9800
C4—H4A0.9500C10—H10C0.9800
C5—N11.335 (4)C11—N31.334 (4)
N1—Zn1—S2108.37 (7)H6B—C6—H6C109.5
N1—Zn1—S3125.72 (7)N2—C7—H7A109.5
S2—Zn1—S3125.87 (3)N2—C7—H7B109.5
N1—Zn1—S196.55 (7)H7A—C7—H7B109.5
S2—Zn1—S173.36 (3)N2—C7—H7C109.5
S3—Zn1—S196.74 (3)H7A—C7—H7C109.5
N1—Zn1—S496.52 (7)H7B—C7—H7C109.5
S2—Zn1—S4105.85 (3)N2—C8—S1121.7 (3)
S3—Zn1—S472.49 (3)N2—C8—S2120.2 (3)
S1—Zn1—S4166.41 (3)S1—C8—S2118.10 (18)
C8—S1—Zn180.77 (11)N3—C9—H9A109.5
C8—S2—Zn187.75 (11)N3—C9—H9B109.5
C11—S3—Zn188.10 (10)H9A—C9—H9B109.5
C11—S4—Zn180.15 (10)N3—C9—H9C109.5
N1—C1—C2122.7 (3)H9A—C9—H9C109.5
N1—C1—H1A118.6H9B—C9—H9C109.5
C2—C1—H1A118.6N3—C10—H10A109.5
C1—C2—C3120.4 (3)N3—C10—H10B109.5
C1—C2—H2A119.8H10A—C10—H10B109.5
C3—C2—H2A119.8N3—C10—H10C109.5
C2—C3—C4116.4 (3)H10A—C10—H10C109.5
C2—C3—C3i122.1 (3)H10B—C10—H10C109.5
C4—C3—C3i121.5 (3)N3—C11—S4122.4 (2)
C5—C4—C3119.8 (3)N3—C11—S3119.9 (2)
C5—C4—H4A120.1S4—C11—S3117.64 (17)
C3—C4—H4A120.1C5—N1—C1117.4 (3)
N1—C5—C4123.2 (3)C5—N1—Zn1123.2 (2)
N1—C5—H5A118.4C1—N1—Zn1119.4 (2)
C4—C5—H5A118.4C8—N2—C6121.9 (3)
N2—C6—H6A109.5C8—N2—C7121.8 (3)
N2—C6—H6B109.5C6—N2—C7116.3 (3)
H6A—C6—H6B109.5C11—N3—C9123.2 (3)
N2—C6—H6C109.5C11—N3—C10121.8 (3)
H6A—C6—H6C109.5C9—N3—C10115.0 (3)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4A···S3ii0.952.863.782 (3)164

Symmetry codes: (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5042).

References

  • Arora, A., Sud, D., Sharma, J. R. & Arora, C. L. (2003). Asia J. Chem.15, 715–719.
  • Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.
  • Bruker (2001). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, D., Lai, C.-S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.
  • Hogarth, G. & Richards, I. (2006). Inorg. Chim. Acta, 359, 1335–1338.
  • Jian, F., Bei, F., Zhao, P., Wang, X., Fun, H. K. & Chinnakali, K. (2002). J. Coord. Chem.55, 429–437.
  • Lai, C.-S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography