PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1500.
Published online 2010 October 31. doi:  10.1107/S1600536810043977
PMCID: PMC3009052

catena-Poly[cadmium-bis­(μ-N,N-dimethyl­dithio­carbamato-κ3 S,S′:S)]

Abstract

In the title compound, [Cd(C3H6NS2)2]n, the CdII atom, lying on a twofold rotation axis, is coordinated by six S atoms from four different N,N-dimethyl­dithio­carbamate ligands in a distorted octa­hedral geometry. The bridging of S atoms of the ligands leads to the formation of a one-dimensional structure along [001].

Related literature

For general background to metal–organic frameworks, see: Kitagawa et al. (2006 [triangle]); Papaefstathiou & MacGillivray (2003 [triangle]); Yaghi et al. (1998 [triangle]). For sodium, zinc and copper salts of dimethyl­dithio­carbamate, see: Einstein & Field (1974 [triangle]); Oskarsson & Ymén (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1500-scheme1.jpg

Experimental

Crystal data

  • [Cd(C3H6NS2)2]
  • M r = 352.82
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1500-efi1.jpg
  • a = 10.055 (2) Å
  • b = 14.744 (3) Å
  • c = 7.9518 (17) Å
  • V = 1178.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.52 mm−1
  • T = 296 K
  • 0.54 × 0.22 × 0.17 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.519, T max = 0.652
  • 9543 measured reflections
  • 1370 independent reflections
  • 1221 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017
  • wR(F 2) = 0.044
  • S = 1.07
  • 1370 reflections
  • 63 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810043977/hy2367sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043977/hy2367Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Ningbo Natural Science Foundation (grant No. 2010 A610060), the ‘Qianjiang Talent’ Projects of Zhejiang Province (grant No. 2009R10032), the Program for Innovative Research Team of Ningbo Novel Photoelectric Materials and Devices (grant No. 2009B21007), and the K. C. Wong Magna Fund of Ningbo University.

supplementary crystallographic information

Comment

Rapid development of metal–organic frameworks has been made in recent years not only for their potential applications in materials science but also for fascinating architectures and topologies (Kitagawa et al., 2006; Papaefstathiou & MacGillivray, 2003; Yaghi et al., 1998). Dimethyldithiocarbamic acid is widely used in latex industry. Its natrium, zinc and copper salts are applied widely in antimicrobial, antisepsis and accelerant (Einstein & Field, 1974; Oskarsson & Ymén, 1983). Meanwhile, dimethyldithiocarbamic acid, possessing two S atoms, is a good candidate to coordinate metal atoms and generates rich hydrogen bonding modes. Herein we report the preparation and characterization of the first cadmium complex of dimethyldithiocarbamic acid.

In the title complex, the CdII ion is coordinated in an octahedral geometry by six S atoms from four different dimethyldithiocarbamate ligands (Fig. 1), with the Cd—S distances ranging from 2.6255 (7) to 2.7909 (6) Å (Table 1). Through the bridging of S2 atoms, the title complex forms a one-dimensional structure (Fig. 2).

Experimental

A mixture containing 0.005 mmol of Cd(NO3)2.4H2O and 0.010 mmol of dimethyldithiocarbamic acid was placed in a small vial containing MeOH (3.0 ml), DMF (1.0 ml) and H2O (0.5 ml). The vial was sealed, heated at 373 K for 2 d and allowed to cool to room temperature. Colorless crystals suitable for X-ray diffraction were collected and dried in air (yield: 50%).

Refinement

H atoms were placed in calculated positions and treated using a riding model, with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound, showing the Cd coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 3/2-x, y, 1/2+z; (ii) 3/2-x, 1/2-y, z; (iii) x, 1/2-y, 1/2+z.]
Fig. 2.
One-dimensional chain in the title complex. H atoms have been omitted for clarity.

Crystal data

[Cd(C3H6NS2)2]F(000) = 696
Mr = 352.82Dx = 1.988 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 4468 reflections
a = 10.055 (2) Åθ = 2.5–27.6°
b = 14.744 (3) ŵ = 2.52 mm1
c = 7.9518 (17) ÅT = 296 K
V = 1178.9 (4) Å3Block, colorless
Z = 40.54 × 0.22 × 0.17 mm

Data collection

Bruker APEXII CCD diffractometer1370 independent reflections
Radiation source: fine-focus sealed tube1221 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.519, Tmax = 0.652k = −16→19
9543 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.044w = 1/[σ2(Fo2) + (0.0174P)2 + 0.6307P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1370 reflectionsΔρmax = 0.29 e Å3
63 parametersΔρmin = −0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.75000.25000.17288 (2)0.03178 (9)
S10.49818 (5)0.28596 (4)0.11658 (7)0.04016 (14)
S20.71139 (5)0.37665 (3)−0.08336 (6)0.03093 (12)
N10.45119 (16)0.39753 (11)−0.1396 (2)0.0335 (4)
C10.54274 (18)0.35704 (12)−0.0449 (2)0.0279 (4)
C20.3088 (2)0.38157 (18)−0.1150 (3)0.0473 (5)
H2A0.29520.3465−0.01180.071*
H2B0.27340.3477−0.21120.071*
H2C0.26260.4399−0.10570.071*
C30.4855 (2)0.45777 (16)−0.2802 (3)0.0481 (5)
H3A0.55490.5003−0.24460.072*
H3B0.40630.4917−0.31510.072*
H3C0.51810.4215−0.37490.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02789 (12)0.04207 (14)0.02537 (12)0.00462 (8)0.0000.000
S10.0295 (2)0.0507 (3)0.0403 (3)0.0030 (2)0.0035 (2)0.0156 (2)
S20.0294 (2)0.0340 (2)0.0294 (2)−0.00350 (18)−0.00062 (18)−0.00097 (18)
N10.0323 (8)0.0348 (9)0.0333 (8)0.0051 (7)−0.0036 (7)0.0015 (7)
C10.0298 (9)0.0284 (9)0.0256 (9)0.0017 (7)−0.0001 (7)−0.0039 (7)
C20.0331 (11)0.0580 (14)0.0509 (13)0.0091 (10)−0.0074 (10)0.0033 (11)
C30.0544 (13)0.0434 (12)0.0466 (12)0.0058 (10)−0.0070 (11)0.0154 (10)

Geometric parameters (Å, °)

Cd1—S12.6255 (7)N1—C31.469 (3)
Cd1—S22.7909 (6)C2—H2A0.9800
Cd1—S2i2.7194 (6)C2—H2B0.9800
S1—C11.7169 (19)C2—H2C0.9800
S2—C11.7473 (19)C3—H3A0.9800
S2—Cd1ii2.7194 (6)C3—H3B0.9800
N1—C11.331 (2)C3—H3C0.9800
N1—C21.464 (3)
S1—Cd1—S1iii160.37 (3)C1—N1—C2121.94 (18)
S1—Cd1—S2i96.922 (18)C1—N1—C3122.66 (17)
S1iii—Cd1—S2i97.039 (16)C2—N1—C3115.34 (17)
S1—Cd1—S2iv97.039 (16)N1—C1—S1121.09 (14)
S1iii—Cd1—S2iv96.922 (18)N1—C1—S2119.88 (14)
S2i—Cd1—S2iv89.07 (3)S1—C1—S2119.03 (10)
S1—Cd1—S2iii98.326 (18)N1—C2—H2A109.5
S1iii—Cd1—S2iii66.812 (15)N1—C2—H2B109.5
S2i—Cd1—S2iii163.74 (2)H2A—C2—H2B109.5
S2iv—Cd1—S2iii94.63 (2)N1—C2—H2C109.5
S1—Cd1—S266.812 (15)H2A—C2—H2C109.5
S1iii—Cd1—S298.326 (18)H2B—C2—H2C109.5
S2i—Cd1—S294.63 (2)N1—C3—H3A109.5
S2iv—Cd1—S2163.74 (2)N1—C3—H3B109.5
S2iii—Cd1—S286.22 (3)H3A—C3—H3B109.5
C1—S1—Cd189.95 (6)N1—C3—H3C109.5
C1—S2—Cd1ii98.61 (6)H3A—C3—H3C109.5
C1—S2—Cd184.06 (6)H3B—C3—H3C109.5
Cd1ii—S2—Cd192.35 (2)

Symmetry codes: (i) −x+3/2, y, z+1/2; (ii) −x+3/2, y, z−1/2; (iii) −x+3/2, −y+1/2, z; (iv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2367).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Einstein, F. W. B. & Field, J. S. (1974). Acta Cryst. B30, 2928–2930.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kitagawa, S., Noro, S. & Nakamura, T. (2006). Chem. Commun. pp. 701–707. [PubMed]
  • Oskarsson, Å. & Ymén, I. (1983). Acta Cryst. C39, 66–68.
  • Papaefstathiou, G. S. & MacGillivray, L. R. (2003). Coord. Chem. Rev.246, 169–184.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography