PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1499.
Published online 2010 October 31. doi:  10.1107/S160053681004393X
PMCID: PMC3009048

cis-Dichloridobis(2-phenyl­pyridine-κN)platinum(II)

Abstract

In the title complex, cis-[PtCl2(C11H9N)2], the PtII ion is situated in a slightly distorted square-planar environment coordinated by two N atoms from two 2-phenyl­pyridine ligands and two Cl atoms. The two pyridyl planes are inclined with dihedral angles of 59.1 (2) and 61.84 (19)° with respect to the PtCl2N2 plane. In the crystal, the complex mol­ecules display inter- and intra­molecular π–π stacking inter­actions, with centroid-centroid distances of 3.806 (5)–3.845 (5) Å, which form a one-dimensional column structure along the a axis.

Related literature

For an NMR study on the title compound, see: Pazderski et al. (2009 [triangle]). For the crystal structures of closely related metal complexes, see: Chi & Chou (2010 [triangle]); Evans et al. (2006 [triangle]); Mdleleni et al. (1995 [triangle]); Okada et al. (2001 [triangle]); Saito et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1499-scheme1.jpg

Experimental

Crystal data

  • [PtCl2(C11H9N)2]
  • M r = 576.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1499-efi1.jpg
  • a = 7.6457 (8) Å
  • b = 18.0712 (19) Å
  • c = 14.9876 (12) Å
  • β = 96.014 (7)°
  • V = 2059.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.08 mm−1
  • T = 200 K
  • 0.30 × 0.05 × 0.03 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.329, T max = 0.494
  • 9783 measured reflections
  • 4488 independent reflections
  • 3862 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.076
  • S = 1.04
  • 4488 reflections
  • 244 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 1.71 e Å−3
  • Δρmin = −1.44 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2143 Friedel pairs
  • Flack parameter: 0.010 (10)

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004393X/is2622sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004393X/is2622Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

It has been well known that metal complexes with 2-phenylpyridinate (ppy = C11H8N) show intense photoluminescence, especially for IrIII and PtII complexes (Evans et al., 2006; Chi & Chou, 2010). Recently, we found that the IrIII complex having both ppy and D-Hpen ligands, [IrIII(ppy)2(D-Hpen)] (D—H2pen = D-penicillamine), readily reacts with AgI ion to give a luminescent S bridged IrIIIAgIIrIII trinuclear complex, [Ag{Ir(ppy)2(D—H0.5pen)}2] (Saito et al., 2010). We report herein the crystal structure of a platinum(II) complex with two monodentate 2-phenylpyridine ligands, [PtCl2(C11H9N)2] (I), which was accidentally obtained in the course of the reaction of [PtCl(ppy-κ2N,C)]2 with 1-thio-β-D-glucose.

The molecular structure of (I) is shown in Fig. 1. In (I), the two pyridyl planes of 2-phenylpyridine ligands are tilted to the coordination plane of Pt1; each of the dihedral angles of the pyridyl unit with respect to the Pt1/N1/N2/Cl1/Cl2 plane is 59.1 (2)° for the N1/C1–C5 plane and 61.84 (19)° for the N2/C12–C16 plane. In each 2-phenylpyridine ligand, the pyridyl and phenyl rings are inclined with angles of 40.4 (2)° for the N1/C1–C5 and C6—C11 planes and 48.1 (2)° for the N2/C12–C16 and C17—C22 planes, allowing them to form a pair of intramolecular π–π stacking interactions with the closest separations of 3.201 (9) and 3.256 (9) Å. Moreover, the complex molecule contacts to the neighboring molecules through intermolecular π–π stacking interactions with the closest separations of 3.438 (10) and 3.389 (10) Å, giving a one-dimensional columnar structure along the a axis (Fig. 2).

Experimental

The reaction of [PtCl(ppy)]2 with 1-thio-β-D-glucose sodium salt in ethanol/water (v/v = 4/1) gave a yellow solution. The reaction solution was evaporated to dryness and was recrystallized from hot ethanol to give a small amount of yellow needle crystals of (I).

Refinement

H atoms bonded to C atoms were placed at calculated positions and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of molecular structure of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids.
Fig. 2.
A view of the one-dimensional columnar structure formed along the a axis in (I).

Crystal data

[PtCl2(C11H9N)2]F(000) = 1104
Mr = 576.37Dx = 1.859 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
Hall symbol: C -2ycCell parameters from 7887 reflections
a = 7.6457 (8) Åθ = 3.1–27.4°
b = 18.0712 (19) ŵ = 7.08 mm1
c = 14.9876 (12) ÅT = 200 K
β = 96.014 (7)°Needle, yellow
V = 2059.4 (3) Å30.30 × 0.05 × 0.03 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3862 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.046
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −9→9
Tmin = 0.329, Tmax = 0.494k = −23→23
9783 measured reflectionsl = −17→19
4488 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076w = 1/[σ2(Fo2) + (0.0331P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4488 reflectionsΔρmax = 1.71 e Å3
244 parametersΔρmin = −1.44 e Å3
2 restraintsAbsolute structure: Flack (1983), 2143 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.010 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.74923 (3)0.137846 (14)0.68733 (3)0.01865 (8)
Cl10.6380 (6)0.14739 (18)0.8241 (2)0.0380 (9)
Cl20.9250 (3)0.03890 (12)0.73490 (14)0.0347 (5)
N10.6118 (9)0.2302 (4)0.6440 (4)0.0241 (16)
C10.6562 (11)0.2917 (5)0.6883 (6)0.027 (2)
H10.72750.28780.74400.033*
C20.6038 (13)0.3623 (5)0.6577 (7)0.036 (2)
H20.63770.40530.69160.044*
C30.5000 (13)0.3672 (6)0.5756 (8)0.040 (3)
H30.46420.41400.55130.049*
C40.4511 (12)0.3037 (5)0.5310 (6)0.033 (2)
H40.38080.30610.47490.039*
C50.5031 (11)0.2352 (5)0.5670 (5)0.0252 (19)
C60.4362 (13)0.1654 (5)0.5187 (6)0.032 (2)
C70.4466 (13)0.1573 (6)0.4288 (6)0.040 (3)
H70.49620.19540.39570.047*
C80.3829 (14)0.0917 (7)0.3855 (7)0.049 (3)
H80.38680.08600.32280.059*
C90.3158 (14)0.0368 (6)0.4340 (8)0.053 (3)
H90.2755−0.00740.40420.064*
C100.3043 (13)0.0433 (6)0.5251 (8)0.046 (3)
H100.25480.00520.55820.055*
C110.3698 (12)0.1092 (5)0.5664 (6)0.032 (2)
H110.36770.11480.62930.039*
N20.8432 (15)0.1270 (4)0.5656 (7)0.017 (2)
C120.7948 (10)0.0630 (4)0.5202 (5)0.0176 (17)
H120.73520.02540.54930.021*
C130.8316 (11)0.0526 (5)0.4328 (5)0.025 (2)
H130.79970.00760.40250.030*
C140.9150 (11)0.1079 (5)0.3899 (5)0.025 (2)
H140.93780.10220.32920.030*
C150.9638 (11)0.1707 (5)0.4360 (5)0.0244 (19)
H151.02120.20910.40690.029*
C160.9313 (10)0.1798 (5)0.5246 (5)0.0161 (17)
C170.9946 (11)0.2464 (5)0.5768 (5)0.0215 (18)
C180.9717 (11)0.3163 (5)0.5396 (6)0.030 (2)
H180.91150.32210.48120.036*
C191.0357 (14)0.3774 (6)0.5868 (9)0.050 (3)
H191.02160.42530.56070.060*
C201.1213 (15)0.3692 (6)0.6731 (9)0.052 (3)
H201.16310.41160.70630.063*
C211.1455 (12)0.2999 (6)0.7105 (6)0.040 (3)
H211.20480.29470.76910.048*
C221.0845 (11)0.2382 (5)0.6636 (5)0.0249 (19)
H221.10250.19030.68920.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.02321 (15)0.01661 (13)0.01658 (13)0.0010 (4)0.00416 (8)0.0011 (3)
Cl10.054 (2)0.044 (2)0.0187 (15)0.0007 (18)0.0153 (13)0.0000 (13)
Cl20.0444 (15)0.0290 (13)0.0301 (12)0.0094 (11)0.0017 (9)0.0108 (9)
N10.018 (4)0.029 (4)0.026 (4)0.006 (3)0.004 (3)0.000 (3)
C10.021 (5)0.026 (5)0.037 (5)0.003 (4)0.011 (4)−0.004 (4)
C20.033 (6)0.026 (5)0.052 (6)0.008 (5)0.014 (4)0.000 (4)
C30.028 (6)0.025 (6)0.070 (7)0.015 (5)0.016 (5)0.004 (5)
C40.023 (5)0.039 (6)0.036 (5)0.005 (5)0.006 (4)0.014 (4)
C50.021 (5)0.026 (5)0.031 (5)−0.001 (4)0.013 (3)0.006 (4)
C60.040 (6)0.027 (5)0.027 (5)0.011 (4)0.000 (4)0.003 (4)
C70.026 (5)0.063 (8)0.029 (5)0.014 (5)0.000 (4)−0.001 (4)
C80.041 (7)0.050 (7)0.052 (6)0.022 (6)−0.019 (5)−0.015 (6)
C90.031 (6)0.037 (7)0.085 (9)0.011 (5)−0.021 (6)−0.019 (6)
C100.028 (6)0.041 (7)0.067 (8)0.012 (5)−0.007 (5)0.004 (5)
C110.035 (6)0.021 (5)0.042 (6)0.002 (4)0.006 (4)−0.015 (4)
N20.021 (5)0.004 (4)0.026 (6)0.006 (3)−0.001 (4)0.002 (3)
C120.018 (4)0.007 (4)0.028 (4)0.000 (3)0.002 (3)−0.005 (3)
C130.024 (5)0.024 (5)0.028 (5)0.009 (4)0.003 (3)−0.008 (3)
C140.027 (5)0.036 (5)0.013 (4)0.008 (4)0.001 (3)−0.002 (3)
C150.024 (5)0.025 (5)0.024 (5)0.009 (4)0.002 (3)0.007 (4)
C160.014 (4)0.018 (5)0.017 (4)−0.001 (4)0.005 (3)0.006 (3)
C170.020 (5)0.020 (5)0.026 (4)−0.002 (4)0.008 (3)0.002 (3)
C180.024 (5)0.021 (5)0.045 (5)0.001 (4)0.007 (4)0.004 (4)
C190.029 (6)0.025 (6)0.098 (10)−0.004 (5)0.018 (6)0.007 (5)
C200.035 (6)0.038 (7)0.086 (9)−0.020 (6)0.019 (6)−0.031 (6)
C210.032 (6)0.058 (8)0.032 (5)−0.012 (5)0.013 (4)−0.022 (5)
C220.031 (5)0.018 (5)0.026 (5)−0.001 (4)0.009 (3)−0.010 (3)

Geometric parameters (Å, °)

Pt1—N22.039 (10)C10—H100.9500
Pt1—N12.041 (7)C11—H110.9500
Pt1—Cl22.304 (2)N2—C161.352 (11)
Pt1—Cl12.306 (4)N2—C121.373 (11)
N1—C11.321 (11)C12—C131.381 (11)
N1—C51.353 (10)C12—H120.9500
C1—C21.400 (12)C13—C141.381 (12)
C1—H10.9500C13—H130.9500
C2—C31.396 (15)C14—C151.361 (12)
C2—H20.9500C14—H140.9500
C3—C41.360 (14)C15—C161.386 (11)
C3—H30.9500C15—H150.9500
C4—C51.392 (12)C16—C171.489 (11)
C4—H40.9500C17—C181.385 (12)
C5—C61.515 (12)C17—C221.414 (11)
C6—C71.366 (13)C18—C191.374 (14)
C6—C111.370 (13)C18—H180.9500
C7—C81.413 (15)C19—C201.396 (16)
C7—H70.9500C19—H190.9500
C8—C91.361 (16)C20—C211.376 (15)
C8—H80.9500C20—H200.9500
C9—C101.383 (15)C21—C221.374 (12)
C9—H90.9500C21—H210.9500
C10—C111.409 (13)C22—H220.9500
N2—Pt1—N190.7 (3)C6—C11—C10122.1 (9)
N2—Pt1—Cl287.3 (3)C6—C11—H11118.9
N1—Pt1—Cl2175.3 (2)C10—C11—H11118.9
N2—Pt1—Cl1178.4 (3)C16—N2—C12119.4 (9)
N1—Pt1—Cl189.8 (2)C16—N2—Pt1125.3 (7)
Cl2—Pt1—Cl192.32 (11)C12—N2—Pt1115.0 (7)
C1—N1—C5118.4 (8)N2—C12—C13120.9 (8)
C1—N1—Pt1115.5 (6)N2—C12—H12119.5
C5—N1—Pt1125.2 (6)C13—C12—H12119.5
N1—C1—C2123.5 (9)C12—C13—C14119.5 (8)
N1—C1—H1118.3C12—C13—H13120.2
C2—C1—H1118.3C14—C13—H13120.2
C3—C2—C1117.6 (10)C15—C14—C13118.9 (8)
C3—C2—H2121.2C15—C14—H14120.5
C1—C2—H2121.2C13—C14—H14120.5
C4—C3—C2118.8 (9)C14—C15—C16121.2 (8)
C4—C3—H3120.6C14—C15—H15119.4
C2—C3—H3120.6C16—C15—H15119.4
C3—C4—C5120.5 (9)N2—C16—C15120.0 (9)
C3—C4—H4119.8N2—C16—C17118.8 (8)
C5—C4—H4119.8C15—C16—C17121.2 (8)
N1—C5—C4121.0 (8)C18—C17—C22119.7 (8)
N1—C5—C6119.9 (8)C18—C17—C16120.4 (7)
C4—C5—C6119.1 (8)C22—C17—C16119.8 (7)
C7—C6—C11119.9 (9)C19—C18—C17120.2 (9)
C7—C6—C5120.6 (9)C19—C18—H18119.9
C11—C6—C5119.6 (8)C17—C18—H18119.9
C6—C7—C8119.3 (10)C18—C19—C20119.9 (10)
C6—C7—H7120.3C18—C19—H19120.0
C8—C7—H7120.3C20—C19—H19120.0
C9—C8—C7119.9 (10)C21—C20—C19120.3 (10)
C9—C8—H8120.1C21—C20—H20119.8
C7—C8—H8120.1C19—C20—H20119.8
C8—C9—C10122.1 (10)C22—C21—C20120.4 (9)
C8—C9—H9118.9C22—C21—H21119.8
C10—C9—H9118.9C20—C21—H21119.8
C9—C10—C11116.7 (11)C21—C22—C17119.5 (9)
C9—C10—H10121.7C21—C22—H22120.3
C11—C10—H10121.7C17—C22—H22120.3
N2—Pt1—N1—C1−118.5 (6)N1—Pt1—N2—C1655.4 (9)
Cl1—Pt1—N1—C163.0 (6)Cl2—Pt1—N2—C16−120.4 (9)
N2—Pt1—N1—C550.4 (7)N1—Pt1—N2—C12−117.8 (7)
Cl1—Pt1—N1—C5−128.1 (7)Cl2—Pt1—N2—C1266.4 (7)
C5—N1—C1—C2−3.3 (12)C16—N2—C12—C13−1.4 (14)
Pt1—N1—C1—C2166.4 (7)Pt1—N2—C12—C13172.2 (6)
N1—C1—C2—C3−0.3 (13)N2—C12—C13—C14−1.3 (13)
C1—C2—C3—C41.8 (14)C12—C13—C14—C152.0 (12)
C2—C3—C4—C50.3 (14)C13—C14—C15—C160.0 (12)
C1—N1—C5—C45.5 (12)C12—N2—C16—C153.4 (14)
Pt1—N1—C5—C4−163.1 (6)Pt1—N2—C16—C15−169.5 (7)
C1—N1—C5—C6−174.5 (8)C12—N2—C16—C17−175.5 (8)
Pt1—N1—C5—C616.9 (11)Pt1—N2—C16—C1711.5 (13)
C3—C4—C5—N1−4.0 (13)C14—C15—C16—N2−2.8 (13)
C3—C4—C5—C6175.9 (8)C14—C15—C16—C17176.2 (8)
N1—C5—C6—C7−130.7 (9)N2—C16—C17—C18−135.0 (9)
C4—C5—C6—C749.3 (12)C15—C16—C17—C1846.0 (11)
N1—C5—C6—C1147.3 (12)N2—C16—C17—C2247.4 (12)
C4—C5—C6—C11−132.7 (9)C15—C16—C17—C22−131.6 (8)
C11—C6—C7—C82.1 (14)C22—C17—C18—C19−0.1 (13)
C5—C6—C7—C8−179.9 (8)C16—C17—C18—C19−177.7 (8)
C6—C7—C8—C9−1.5 (14)C17—C18—C19—C20−1.1 (14)
C7—C8—C9—C101.2 (16)C18—C19—C20—C211.5 (16)
C8—C9—C10—C11−1.5 (15)C19—C20—C21—C22−0.5 (15)
C7—C6—C11—C10−2.5 (15)C20—C21—C22—C17−0.7 (13)
C5—C6—C11—C10179.5 (8)C18—C17—C22—C211.1 (12)
C9—C10—C11—C62.1 (14)C16—C17—C22—C21178.7 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2622).

References

  • Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev.39, 638–655. [PubMed]
  • Evans, R. C., Douglas, P. & Winscom, C. J. (2006). Coord. Chem. Rev.250, 2093–2126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Mdleleni, M. M., Bridgewater, J. S., Watts, R. J. & Ford, P. C. (1995). Inorg Chem 34, 2334–2342.
  • Okada, T., El-Mehasseb, I. M., Kodaka, M., Tomohiro, T., Okamoto, K. & Okuno, H. (2001). J. Med. Chem 44, 4661–4667. [PubMed]
  • Pazderski, L., Toušek, J., Sitkowski, J., Kozerski, L. & Szłyk, E. (2009). Magn. Reson. Chem.47, 658–665. [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Saito, K., Sarukawa, Y., Tsuge, K. & Konno, T. (2010). Eur. J. Inorg. Chem.25, 3909–3913.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography