PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o3027.
Published online 2010 October 31. doi:  10.1107/S1600536810043746
PMCID: PMC3009046

Diethyl 2-amino-5-[(E)-(furan-2-yl­methyl­idene)amino]­thio­phene-3,4-di­carboxyl­ate

Abstract

In the crystal structure of the title compound, C15H16N2O5S, the azomethine adopts the E configuration. The two heterocyclic rings adopt an anti­periplanar orientation. The mean planes of the thio­phene and furan rings are twisted by 2.51 (4)°. The crystal structure exhibits inter­molecular N—H(...)O hydrogen bonding. π–π stacking is also observed, the centroid-to-centroid distance being 3.770 (4) Å.

Related literature

For general background, see: Dufresne & Skene (2008 [triangle]). For a related crystal structure, see: Skene et al. (2006 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-o3027-scheme1.jpg

Experimental

Crystal data

  • C15H16N2O5S
  • M r = 336.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o3027-efi5.jpg
  • a = 9.3452 (19) Å
  • b = 14.635 (3) Å
  • c = 11.343 (2) Å
  • β = 99.73 (3)°
  • V = 1529.0 (5) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.14 mm−1
  • T = 123 K
  • 0.14 × 0.10 × 0.04 mm

Data collection

  • Bruker SMART 6000 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.728, T max = 0.920
  • 6320 measured reflections
  • 3005 independent reflections
  • 2475 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.102
  • S = 1.03
  • 3005 reflections
  • 210 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: UdMX (Marris, 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810043746/wn2415sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043746/wn2415Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NSERC Canada is thanked for DG and RTI grants allowing this work to be performed, in addition to CFI for additional equipment funding. SD also thanks NSERC for a graduate scholarship. WGS also acknowledges both the Alexander von Humboldt Foundation and the RSC for J. W. T. Jones Travelling fellowships, allowing the completion of this manuscript.

supplementary crystallographic information

Comment

During the course of our ongoing conjugated azomethine research, we prepared the title compound. The X-ray crystallographic analysis not only confirmed the structure (Fig. 1), but that the energetically stable E isomer was formed. Neither solvent nor counter-ions were found in the structure.

The heterocyclic rings were found not to be coplanar; the angle between the heterocyclic mean planes is 2.51 (4)°. This angle is less than that in a previously reported azomethine thiophene system, whose angle is 7.25 (11)° (Skene et al., 2006).

A major point of interest is the azomethine bond. The bond lengths for N2—C4, N2—C5 and C5—C6 are 1.382 (2), 1.289 (2) and 1.420 (2) Å, respectively. These are similar to the related azomethine thiophene compound (Skene et al., 2006), whose homologous lengths are 1.381 (3), 1.283 (3) and 1.426 (3) Å.

Fig. 2 shows that two different hydrogen bonds occur in the crystal structure, viz. N1—H1A···O2iii and N1—H1B···O4ii. The D—H···A angles are 135° and 122° and distances of 2.880 (3) Å and 3.059 (3) Å were measured between the nitrogen and oxygens (Table 1). Dimerization of two molecules occurs via H-bonding between N1—H1A···O2iii. Additionally, π-stacking takes place between two different molecules, at [x, y, z] and [1 - x, -y, 1 - z]. Fig. 3 shows the interactions, with the distance between the planes being 3.440 (4) Å. The centroid···centroid distance between the two rings is 3.770 (4) Å.

Experimental

2-Furaldehyde (37 mg, 0.39 mmol) and 2,5-diamino-thiophene-3,4-dicarboxylic acid diethyl ester (100 mg, 0.39 mmol) were mixed in anhydrous 2-propanol with a catalytic amount of TFA and refluxed for 12 h. The reaction was then purified by flash chromatography to afford the title compound as a brownish yellow solid (110 mg, 85%). Single crystals were obtained by slow evaporation of an acetone solution.

Refinement

Carbon-bound H atoms were placed in calculated positions (Cmethyl—H = 0.98 Å, Cmethylene—H = 0.99 Å and Csp2—H = 0.95 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = kUeq(C), where k = 1.5 for Cmethyl and 1.2 for Cmethylene and Csp2. The H atoms of the amino group were placed in calculated positions (N—H = 0.88 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) representation of the molecular structure, with the numbering scheme adopted. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.
Fig. 2.
Supramolecular structure showing the intermolecular hydrogen bonding (dashed lines). [Symmetry codes: (i) 1/2 - x, 1/2 + y, 1.5 - z; (ii) 1/2 - x, -1/2 + y, 1.5 - z; (iii) -x, -y, 2 - z.]
Fig. 3.
The three-dimensional network demonstrating the π-stacking (dashed lines) in the crystal structure.

Crystal data

C15H16N2O5SF(000) = 704
Mr = 336.36Dx = 1.461 Mg m3
Monoclinic, P21/nMelting point: 425(2) K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 9.3452 (19) ÅCell parameters from 3360 reflections
b = 14.635 (3) Åθ = 5.0–38.8°
c = 11.343 (2) ŵ = 2.14 mm1
β = 99.73 (3)°T = 123 K
V = 1529.0 (5) Å3Block, yellow
Z = 40.14 × 0.10 × 0.04 mm

Data collection

Bruker SMART 6000 diffractometer3005 independent reflections
Radiation source: rotating anode2475 reflections with I > 2σ(I)
Montel 200 opticsRint = 0.036
Detector resolution: 5.5 pixels mm-1θmax = 72.3°, θmin = 5.0°
ω scansh = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −17→18
Tmin = 0.728, Tmax = 0.920l = −13→13
6320 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0643P)2] where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.15876 (5)0.01058 (3)0.62132 (4)0.02153 (13)
O30.26457 (13)0.20322 (8)0.97617 (10)0.0216 (3)
O50.53448 (13)0.16250 (8)0.86520 (11)0.0229 (3)
O10.53601 (14)0.14839 (10)0.36188 (11)0.0299 (3)
O40.42258 (13)0.28091 (8)0.76310 (11)0.0261 (3)
O20.11370 (14)0.08821 (9)1.00209 (11)0.0280 (3)
N20.37833 (15)0.11513 (10)0.55344 (12)0.0201 (3)
N10.01952 (16)−0.02136 (10)0.80267 (14)0.0247 (3)
H1A−0.0029−0.01080.87370.030*
H1B−0.0274−0.06370.75630.030*
C130.42543 (18)0.20165 (12)0.79259 (14)0.0180 (3)
C20.21155 (17)0.09610 (11)0.82328 (15)0.0177 (3)
C40.29499 (18)0.09523 (12)0.63985 (15)0.0194 (4)
C100.19189 (18)0.12672 (12)0.94126 (15)0.0192 (4)
C30.30893 (17)0.13360 (12)0.75044 (14)0.0175 (3)
C140.65332 (19)0.22184 (13)0.91629 (17)0.0274 (4)
H14A0.62310.26190.97800.033*
H14B0.68300.26080.85330.033*
C10.12570 (18)0.02730 (12)0.76478 (15)0.0191 (4)
C60.42538 (19)0.08612 (12)0.35493 (16)0.0218 (4)
C50.35120 (19)0.07232 (12)0.45285 (15)0.0225 (4)
H50.27570.02810.44350.027*
C110.2356 (2)0.24369 (13)1.08714 (15)0.0259 (4)
H11A0.25260.19841.15280.031*
H11B0.13350.26461.07760.031*
C80.5077 (2)0.08255 (14)0.18213 (16)0.0284 (4)
H80.52040.06750.10310.034*
C70.4049 (2)0.04441 (13)0.24649 (16)0.0272 (4)
H70.3351−0.00140.21910.033*
C90.5836 (2)0.14410 (15)0.25473 (17)0.0316 (5)
H90.66040.18000.23430.038*
C150.7766 (2)0.16205 (14)0.97085 (18)0.0320 (4)
H15A0.74550.12311.03210.048*
H15B0.85830.20021.00750.048*
H15C0.80680.12370.90870.048*
C120.3367 (2)0.32281 (13)1.11445 (17)0.0351 (5)
H12A0.43720.30071.12840.053*
H12B0.31670.35431.18620.053*
H12C0.32270.36531.04670.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0226 (2)0.0245 (2)0.0170 (2)−0.00387 (17)0.00208 (16)−0.00373 (16)
O30.0288 (7)0.0215 (6)0.0158 (6)−0.0027 (5)0.0072 (5)−0.0041 (5)
O50.0206 (6)0.0213 (6)0.0245 (7)−0.0023 (5)−0.0025 (5)−0.0003 (5)
O10.0275 (7)0.0373 (8)0.0254 (7)−0.0063 (6)0.0062 (6)−0.0053 (6)
O40.0286 (7)0.0206 (7)0.0278 (7)−0.0032 (5)0.0013 (5)0.0036 (5)
O20.0310 (7)0.0308 (7)0.0253 (7)−0.0070 (6)0.0134 (6)−0.0019 (6)
N20.0221 (7)0.0234 (8)0.0148 (7)0.0023 (6)0.0036 (6)0.0009 (6)
N10.0242 (8)0.0269 (8)0.0239 (8)−0.0083 (6)0.0069 (6)−0.0038 (6)
C130.0205 (8)0.0216 (9)0.0131 (8)0.0010 (6)0.0060 (6)−0.0011 (6)
C20.0171 (8)0.0183 (8)0.0175 (8)0.0003 (6)0.0028 (6)0.0004 (6)
C40.0191 (8)0.0222 (9)0.0170 (8)0.0003 (7)0.0032 (7)0.0008 (7)
C100.0178 (8)0.0213 (9)0.0184 (8)0.0015 (6)0.0025 (7)0.0006 (7)
C30.0174 (8)0.0184 (8)0.0168 (8)0.0013 (6)0.0032 (6)0.0017 (6)
C140.0222 (9)0.0273 (10)0.0309 (10)−0.0057 (7)−0.0011 (8)−0.0059 (8)
C10.0181 (8)0.0200 (8)0.0185 (8)0.0023 (6)0.0013 (7)0.0006 (7)
C60.0235 (8)0.0226 (9)0.0188 (8)0.0000 (7)0.0022 (7)0.0008 (7)
C50.0267 (9)0.0222 (9)0.0188 (9)−0.0013 (7)0.0041 (7)0.0005 (7)
C110.0380 (10)0.0256 (9)0.0154 (8)0.0023 (8)0.0080 (8)−0.0038 (7)
C80.0314 (10)0.0375 (11)0.0174 (9)0.0075 (8)0.0076 (8)0.0002 (8)
C70.0365 (10)0.0259 (10)0.0198 (9)−0.0008 (8)0.0061 (8)−0.0038 (7)
C90.0266 (10)0.0429 (12)0.0278 (10)−0.0014 (8)0.0115 (8)0.0052 (9)
C150.0236 (9)0.0391 (11)0.0303 (10)0.0003 (8)−0.0043 (8)−0.0037 (9)
C120.0578 (14)0.0241 (10)0.0235 (10)−0.0043 (10)0.0078 (9)−0.0049 (8)

Geometric parameters (Å, °)

S1—C11.7242 (18)C14—C151.495 (3)
S1—C41.7633 (18)C14—H14A0.99
O3—C101.334 (2)C14—H14B0.99
O3—C111.4573 (19)C6—C71.357 (2)
O5—C131.3272 (19)C6—C51.420 (2)
O5—C141.451 (2)C5—H50.95
O1—C91.364 (2)C11—C121.494 (3)
O1—C61.370 (2)C11—H11A0.99
O4—C131.206 (2)C11—H11B0.99
O2—C101.224 (2)C8—C91.340 (3)
N2—C51.289 (2)C8—C71.416 (3)
N2—C41.382 (2)C8—H80.95
N1—C11.349 (2)C7—H70.95
N1—H1A0.88C9—H90.95
N1—H1B0.88C15—H15A0.98
C13—C31.493 (2)C15—H15B0.98
C2—C11.385 (2)C15—H15C0.98
C2—C31.437 (2)C12—H12A0.98
C2—C101.452 (2)C12—H12B0.98
C4—C31.360 (2)C12—H12C0.98
C1—S1—C491.65 (8)C7—C6—C5129.21 (18)
C10—O3—C11115.96 (13)O1—C6—C5120.86 (16)
C13—O5—C14116.42 (14)N2—C5—C6125.07 (17)
C9—O1—C6105.92 (15)N2—C5—H5117.5
C5—N2—C4118.38 (15)C6—C5—H5117.5
C1—N1—H1A120O3—C11—C12106.90 (15)
C1—N1—H1B120O3—C11—H11A110.3
H1A—N1—H1B120C12—C11—H11A110.3
O4—C13—O5124.46 (16)O3—C11—H11B110.3
O4—C13—C3124.88 (16)C12—C11—H11B110.3
O5—C13—C3110.65 (14)H11A—C11—H11B108.6
C1—C2—C3111.96 (15)C9—C8—C7106.42 (17)
C1—C2—C10120.84 (15)C9—C8—H8126.8
C3—C2—C10127.08 (15)C7—C8—H8126.8
C3—C4—N2126.11 (16)C6—C7—C8106.60 (17)
C3—C4—S1110.77 (13)C6—C7—H7126.7
N2—C4—S1123.06 (13)C8—C7—H7126.7
O2—C10—O3122.79 (16)C8—C9—O1111.14 (17)
O2—C10—C2123.91 (16)C8—C9—H9124.4
O3—C10—C2113.27 (14)O1—C9—H9124.4
C4—C3—C2113.65 (15)C14—C15—H15A109.5
C4—C3—C13121.43 (15)C14—C15—H15B109.5
C2—C3—C13124.67 (15)H15A—C15—H15B109.5
O5—C14—C15107.41 (15)C14—C15—H15C109.5
O5—C14—H14A110.2H15A—C15—H15C109.5
C15—C14—H14A110.2H15B—C15—H15C109.5
O5—C14—H14B110.2C11—C12—H12A109.5
C15—C14—H14B110.2C11—C12—H12B109.5
H14A—C14—H14B108.5H12A—C12—H12B109.5
N1—C1—C2128.96 (16)C11—C12—H12C109.5
N1—C1—S1118.97 (13)H12A—C12—H12C109.5
C2—C1—S1111.94 (13)H12B—C12—H12C109.5
C7—C6—O1109.92 (16)
C14—O5—C13—O43.5 (2)O5—C13—C3—C4−101.12 (18)
C14—O5—C13—C3−177.89 (14)O4—C13—C3—C2−108.6 (2)
C5—N2—C4—C3179.86 (17)O5—C13—C3—C272.8 (2)
C5—N2—C4—S12.9 (2)C13—O5—C14—C15−167.31 (15)
C1—S1—C4—C3−1.07 (14)C3—C2—C1—N1−177.66 (17)
C1—S1—C4—N2176.35 (15)C10—C2—C1—N1−1.3 (3)
C11—O3—C10—O2−5.4 (2)C3—C2—C1—S1−1.82 (18)
C11—O3—C10—C2172.78 (14)C10—C2—C1—S1174.49 (12)
C1—C2—C10—O29.1 (3)C4—S1—C1—N1177.96 (14)
C3—C2—C10—O2−175.17 (17)C4—S1—C1—C21.66 (13)
C1—C2—C10—O3−169.01 (15)C9—O1—C6—C70.0 (2)
C3—C2—C10—O36.7 (2)C9—O1—C6—C5179.52 (17)
N2—C4—C3—C2−177.09 (15)C4—N2—C5—C6178.96 (16)
S1—C4—C3—C20.22 (19)C7—C6—C5—N2179.79 (19)
N2—C4—C3—C13−2.6 (3)O1—C6—C5—N20.3 (3)
S1—C4—C3—C13174.76 (12)C10—O3—C11—C12175.14 (15)
C1—C2—C3—C41.0 (2)O1—C6—C7—C8−0.1 (2)
C10—C2—C3—C4−175.00 (16)C5—C6—C7—C8−179.58 (18)
C1—C2—C3—C13−173.30 (15)C9—C8—C7—C60.2 (2)
C10—C2—C3—C1310.7 (3)C7—C8—C9—O1−0.2 (2)
O4—C13—C3—C477.5 (2)C6—O1—C9—C80.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882.202.889 (2)135
N1—H1B···O4ii0.882.503.059 (3)122

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2415).

References

  • Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dufresne, S. & Skene, W. G. (2008). J. Org. Chem.73, 3859–3866. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Marris, T. (2004). UdMX Université de Montréal, Canada.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Skene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382–o2384.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography