PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1371.
Published online 2010 October 9. doi:  10.1107/S1600536810039498
PMCID: PMC3009045

catena-Poly[[dipyridine­cadmium(II)]-μ-5-amino-2,4,6-triiodo­isophthalato]

Abstract

The hydro­thermal reaction of cadmium(II) nitrate with 5-amino-2,4,6-triiodo­isophthalic acid and pyridine in DMF solution leads to the formation of the title compound, [Cd(C8H2I3NO4)(C5H5N)2]n. The structure contains a four-coordinate Cd2+ ion in a distorted tetra­hedral geometry, which lies on a crystallographic twofold rotation axis. The Cd2+ ion is bonded to two N atoms from two pyridine ligands and two carboxyl­ate O atoms from two 5-amino-2,4,6-triiodo­isophthalate anions. The Cd—O distances are 2.429 (5) and 2.305 (5) Å and the Cd—N distance is 2.236 (8) Å. The two carboxyl­ate groups of individual 5-amino-2,4,6-triiodo­isophthalate anions act as a bridge to the Cd2+ atoms. leading to a chain structure along the c axis.

Related literature

For the isotypic Hg complex, see: Zhang et al. (2008 [triangle]). For the structure of 5-amino-2,4,6-triiodo­isophthalic acid monohydrate, see: Beck & Sheldrick (2008 [triangle]). For the structures of related metal complexes, see: Dai et al. (2008 [triangle])·For the use of triiodinated aromatic compounds in radiology, see: Estep et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1371-scheme1.jpg

Experimental

Crystal data

  • [Cd(C8H2I3NO4)(C5H5N)2]
  • M r = 827.41
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-66-m1371-efi1.jpg
  • a = 11.824 (3) Å
  • c = 15.841 (9) Å
  • V = 2214.7 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.20 mm−1
  • T = 293 K
  • 0.25 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker 2003 [triangle]) T min = 0.357, T max = 0.423
  • 14248 measured reflections
  • 2714 independent reflections
  • 1949 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.089
  • S = 1.02
  • 2714 reflections
  • 134 parameters
  • 60 restraints
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.87 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1096 Friedel pairs
  • Flack parameter: −0.04 (6)

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2000 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810039498/si2296sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039498/si2296Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the Natural Science Foundation of Zhejiang Province, China (No. Y4080342) and the Science Foundation of Zhejiang Sci-Tech University (No. 0813622-Y) for financial support.

supplementary crystallographic information

Comment

5-Amino-2,4,6-triiodoisophthalic acid (ATIA), is the precursor and core structure of triiodinated contrast media used in radiology (Estep et al., 2000). The crystal structure of this compound was reported recently (Beck et al., 2008), however, there are very few studies that have been reported on the structural characterization of its metal complexes (Dai et al., 2008; Zhang et al., 2008). Here we report the synthesis and crystal structure of the title complex catena-[bis(pyridine)-µ-5-amino-2,4,6-triiodoisophthalic acid-O,O-cadmium(II)].

In the title complex the central cadmium ion is coordinated by two nitrogen atoms from two pyridine ligands and two oxygen atoms from different ATIA ligands in a tetrahedral geometry. The bond lengths are 2.236 (8)Å for Cd1—N2; 2.305 (5) Å for Cd1—O2 and 2.429 (5) Å for Cd1—O1. Both carboxylate groups of ATIA ligand are deprotonated during the reaction, and the whole ligand acts as a bridging linker to connect two cadmium ions. Thus, the [Cd(pyr)2] units are infinitely connected by ATIA ligands along the c axis to give rise to a one-dimensional chain structure.

Experimental

5-amino-2,4,6-triiodoisophthalic acid (0.5 mmol) was dissolved in 10 ml DMA, in which Cd(NO3)2(0.5 mmol) and 20 µl pyridine were added in. The mixture was sealed in a Pyrex tube and heated at 358 K for 3 d. After cooling to room temperature, light yellow block crystals were obtained.

Refinement

All H atoms were positioned geometrically and constrained as riding atoms, with C—H distance of 0.93 Å and Uiso(H) set to 1.2 Ueq(C) of the parent atom.

Figures

Fig. 1.
ORTEP plot of the title complex with atom numbering scheme. Thermal ellipsoids are drawn at 40% probability level.
Fig. 2.
A section of the infinite [Cd(ATIA)(pyr)2]n chain along the c axis.

Crystal data

[Cd(C8H2I3NO4)(C5H5N)2]Dx = 2.482 Mg m3
Mr = 827.41Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 1949 reflections
Hall symbol: P 4abw 2nwθ = 2.2–28.2°
a = 11.824 (3) ŵ = 5.20 mm1
c = 15.841 (9) ÅT = 293 K
V = 2214.7 (15) Å3Block, light yellow
Z = 40.25 × 0.25 × 0.20 mm
F(000) = 1520

Data collection

Bruker SMART CCD diffractometer2714 independent reflections
Radiation source: fine-focus sealed tube1949 reflections with I > 2σ(I)
graphiteRint = 0.054
Detector resolution: none pixels mm-1θmax = 28.2°, θmin = 2.2°
phi and ω scansh = −15→15
Absorption correction: multi-scan (SADABS; Bruker 2003)k = −14→15
Tmin = 0.357, Tmax = 0.423l = −17→21
14248 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.089w = 1/[σ2(Fo2) + (0.0338P)2 + 2.974P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2714 reflectionsΔρmax = 0.60 e Å3
134 parametersΔρmin = −0.87 e Å3
60 restraintsAbsolute structure: Flack (1983), 1096 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.04 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cd10.62771 (5)0.37229 (5)0.25000.0572 (2)
I10.51631 (4)0.51631 (4)0.00000.0630 (2)
I20.28105 (5)0.12921 (6)0.17206 (4)0.0802 (2)
N10.1416 (5)0.1416 (5)0.00000.064 (2)
H1A0.13570.09610.04210.077*0.50
H1B0.09610.1357−0.04210.077*0.50
N20.6179 (7)0.2214 (7)0.3348 (5)0.0771 (19)
O10.5507 (5)0.2646 (5)0.1328 (3)0.0668 (15)
O20.6079 (5)0.5525 (4)0.3035 (3)0.0684 (16)
C10.2221 (6)0.2221 (6)0.00000.051 (2)
C20.2982 (6)0.2357 (6)0.0666 (4)0.0462 (16)
C30.3809 (6)0.3171 (6)0.0673 (4)0.0479 (17)
C40.3908 (5)0.3908 (5)0.00000.043 (2)
C50.4652 (7)0.3247 (7)0.1375 (5)0.0540 (19)
C60.5209 (10)0.1691 (10)0.3519 (9)0.113 (3)
H60.45600.19460.32480.135*
C70.5108 (12)0.0835 (12)0.4049 (10)0.134 (4)
H70.44190.04640.41140.161*
C80.6063 (12)0.0494 (13)0.4514 (11)0.147 (4)
H80.6026−0.00390.49440.177*
C90.7027 (12)0.0999 (13)0.4288 (10)0.143 (4)
H90.77010.07450.45230.172*
C100.7060 (10)0.1827 (10)0.3754 (8)0.113 (4)
H100.77550.21690.36540.135*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0617 (3)0.0617 (3)0.0482 (4)−0.0120 (4)−0.0049 (3)−0.0049 (3)
I10.0559 (3)0.0559 (3)0.0773 (5)−0.0148 (3)0.0062 (3)−0.0062 (3)
I20.0755 (4)0.0957 (5)0.0695 (3)−0.0276 (4)−0.0027 (3)0.0291 (3)
N10.060 (4)0.060 (4)0.071 (5)−0.027 (5)−0.007 (4)0.007 (4)
N20.075 (5)0.073 (5)0.083 (5)−0.004 (4)−0.013 (4)−0.005 (4)
O10.054 (3)0.091 (4)0.056 (3)0.008 (3)−0.006 (3)−0.012 (3)
O20.091 (4)0.056 (3)0.058 (3)−0.003 (3)−0.026 (3)−0.005 (2)
C10.047 (3)0.047 (3)0.058 (5)−0.009 (5)0.003 (4)−0.003 (4)
C20.041 (4)0.050 (4)0.048 (4)−0.001 (3)0.005 (3)0.001 (3)
C30.040 (4)0.052 (4)0.052 (4)−0.006 (3)0.009 (3)−0.005 (3)
C40.036 (3)0.036 (3)0.058 (5)0.000 (4)0.013 (3)−0.013 (3)
C50.048 (5)0.061 (5)0.053 (4)−0.011 (4)0.006 (4)−0.003 (4)
C60.077 (6)0.105 (7)0.156 (9)−0.028 (6)−0.026 (6)0.040 (6)
C70.102 (7)0.127 (8)0.173 (9)−0.027 (7)−0.027 (7)0.054 (7)
C80.105 (8)0.142 (8)0.196 (9)−0.010 (7)−0.031 (8)0.062 (8)
C90.108 (8)0.129 (8)0.192 (9)−0.026 (7)−0.043 (8)0.046 (8)
C100.075 (6)0.102 (7)0.161 (9)−0.008 (6)−0.038 (6)0.048 (6)

Geometric parameters (Å, °)

Cd1—N22.236 (8)C1—C21.395 (9)
Cd1—N2i2.236 (8)C1—C2ii1.395 (9)
Cd1—O2i2.305 (5)C2—C31.373 (9)
Cd1—O22.305 (5)C3—C41.382 (8)
Cd1—O1i2.429 (5)C3—C51.495 (11)
Cd1—O12.429 (5)C4—C3ii1.382 (8)
Cd1—C5i2.681 (8)C5—O2i1.246 (9)
Cd1—C52.681 (8)C6—C71.321 (16)
I1—C42.098 (8)C6—H60.9300
I2—C22.102 (7)C7—C81.407 (17)
N1—C11.346 (12)C7—H70.9300
N1—H1A0.8600C8—C91.336 (17)
N1—H1B0.8600C8—H80.9300
N2—C101.307 (12)C9—C101.293 (16)
N2—C61.331 (13)C9—H90.9300
O1—C51.239 (10)C10—H100.9300
O2—C5i1.246 (9)
N2—Cd1—N2i116.3 (4)C5i—O2—Cd193.2 (5)
N2—Cd1—O2i104.7 (3)N1—C1—C2122.5 (4)
N2i—Cd1—O2i120.8 (2)N1—C1—C2ii122.5 (4)
N2—Cd1—O2120.8 (2)C2—C1—C2ii115.0 (9)
N2i—Cd1—O2104.7 (3)C3—C2—C1123.1 (7)
O2i—Cd1—O287.0 (3)C3—C2—I2118.8 (5)
N2—Cd1—O1i82.4 (2)C1—C2—I2118.0 (5)
N2i—Cd1—O1i91.2 (2)C2—C3—C4119.8 (7)
O2i—Cd1—O1i136.7 (2)C2—C3—C5121.6 (7)
O2—Cd1—O1i54.96 (18)C4—C3—C5118.6 (6)
N2—Cd1—O191.2 (2)C3ii—C4—C3119.2 (8)
N2i—Cd1—O182.4 (2)C3ii—C4—I1120.4 (4)
O2i—Cd1—O154.96 (18)C3—C4—I1120.4 (4)
O2—Cd1—O1136.7 (2)O1—C5—O2i123.3 (7)
O1i—Cd1—O1167.9 (3)O1—C5—C3117.7 (7)
N2—Cd1—C5i100.6 (3)O2i—C5—C3119.0 (7)
N2i—Cd1—C5i101.2 (3)O1—C5—Cd164.8 (4)
O2i—Cd1—C5i111.4 (2)O2i—C5—Cd159.1 (4)
O2—Cd1—C5i27.7 (2)C3—C5—Cd1169.9 (5)
O1i—Cd1—C5i27.5 (2)C7—C6—N2124.3 (13)
O1—Cd1—C5i164.3 (3)C7—C6—H6117.8
N2—Cd1—C5101.2 (3)N2—C6—H6117.8
N2i—Cd1—C5100.6 (3)C6—C7—C8118.7 (14)
O2i—Cd1—C527.7 (2)C6—C7—H7120.7
O2—Cd1—C5111.4 (2)C8—C7—H7120.7
O1i—Cd1—C5164.3 (3)C9—C8—C7114.6 (15)
O1—Cd1—C527.5 (2)C9—C8—H8122.7
C5i—Cd1—C5138.0 (4)C7—C8—H8122.7
C1—N1—H1A120.0C10—C9—C8122.6 (15)
C1—N1—H1B120.0C10—C9—H9118.7
H1A—N1—H1B120.0C8—C9—H9118.7
C10—N2—C6115.1 (9)C9—C10—N2124.2 (12)
C10—N2—Cd1122.3 (7)C9—C10—H10117.9
C6—N2—Cd1122.5 (7)N2—C10—H10117.9
C5—O1—Cd187.7 (5)

Symmetry codes: (i) −y+1, −x+1, −z+1/2; (ii) y, x, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2296).

References

  • Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286. [PMC free article] [PubMed]
  • Brandenburg, K. (2000). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2003). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin,USA.
  • Dai, F., He, H. & Sun, D. (2008). J. Am. Chem. Soc.130, 14064–14065. [PubMed]
  • Estep, K. G., Josef, K. A., Bacon, E. R., Illig, C. R., Toner, J. L., Mishra, D., Blazak, W. F., Miller, D. M., Johnson, D. K., Allen, J. M., Spencer, A. & Wilson, S. A. (2000). J. Med. Chem.43, 1940–1948. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhang, Y., Zhao, J., Tang, G. & Jiang, Z. (2008). Acta Cryst. E64, m1324. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography