PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2839.
Published online 2010 October 20. doi:  10.1107/S160053681004078X
PMCID: PMC3009034

1-Propyl-1H-2,1-benzothia­zin-4(3H)-one 2,2-dioxide

Abstract

In the title compound, C11H13NO3S, a benzothia­zine derivative, the heterocycle adopts a sofa conformation. In the crystal, weak C—H(...)O hydrogen bonds connect the mol­ecules into a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Volovenko et al. (2007 [triangle]). For a related structure, see: Shafiq et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2839-scheme1.jpg

Experimental

Crystal data

  • C11H13NO3S
  • M r = 239.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2839-efi1.jpg
  • a = 7.9448 (2) Å
  • b = 8.0701 (3) Å
  • c = 9.6267 (2) Å
  • α = 87.468 (2)°
  • β = 84.097 (2)°
  • γ = 64.453 (1)°
  • V = 553.92 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 296 K
  • 0.28 × 0.21 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.925, T max = 0.967
  • 12058 measured reflections
  • 2765 independent reflections
  • 2229 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.111
  • S = 1.07
  • 2765 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681004078X/bt5369sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681004078X/bt5369Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore.

supplementary crystallographic information

Comment

Here we report the crystal structure of title compound in countinuation to the previously published 3,3-dichloro-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide derivative (Shafiq et al., 2009). The difference between the two compounds is a propyl which differ just only in substitution at N and at the methylene C atom in the benzothiazine ring. The heterocycle adopts a sofa conformation. Weak C—H···O type hydrogen bonds connect the molecules to a three dimensional network.

Experimental

The title compound was prepared following the available literature procedure (Volovenko et al., 2007).

Refinement

All the C—H H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic C—H = 0.97 Å for methylene C—H = 0.96 Å for methyl and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic, with Uiso(H) = 1.2 Ueq(C) for methylene, with Uiso(H) = 1.5 Ueq(C) for methyl.

Figures

Fig. 1.
Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Unit cell packing diagram showing the hydrogen bonding with dashed lines.

Crystal data

C11H13NO3SZ = 2
Mr = 239.28F(000) = 252
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9448 (2) ÅCell parameters from 5097 reflections
b = 8.0701 (3) Åθ = 2.2–21.8°
c = 9.6267 (2) ŵ = 0.28 mm1
α = 87.468 (2)°T = 296 K
β = 84.097 (2)°Needle, light brown
γ = 64.453 (1)°0.28 × 0.21 × 0.12 mm
V = 553.92 (2) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer2765 independent reflections
Radiation source: fine-focus sealed tube2229 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −10→10
Tmin = 0.925, Tmax = 0.967k = −10→10
12058 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0604P)2 + 0.0882P] where P = (Fo2 + 2Fc2)/3
2765 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.44648 (6)0.31465 (5)0.66978 (4)0.04181 (14)
O10.2757 (2)0.71661 (17)0.91660 (14)0.0633 (4)
O20.62535 (17)0.25460 (17)0.71992 (15)0.0584 (3)
O30.4391 (2)0.2879 (2)0.52525 (12)0.0680 (4)
N10.31827 (18)0.22605 (17)0.76115 (12)0.0380 (3)
C10.28023 (19)0.26527 (18)0.90617 (14)0.0313 (3)
C20.2496 (2)0.1412 (2)0.99954 (16)0.0408 (3)
H20.25190.03380.96610.049*
C30.2161 (2)0.1770 (2)1.14058 (16)0.0473 (4)
H30.19510.09351.20120.057*
C40.2129 (2)0.3344 (2)1.19393 (17)0.0494 (4)
H40.19470.35491.28980.059*
C50.2372 (2)0.4602 (2)1.10331 (16)0.0421 (3)
H50.23220.56791.13840.051*
C60.26911 (19)0.42939 (18)0.95988 (14)0.0323 (3)
C70.2874 (2)0.57493 (19)0.87064 (16)0.0376 (3)
C80.3163 (3)0.5469 (2)0.71447 (16)0.0447 (4)
H8A0.38120.61710.67230.054*
H8B0.19530.59240.67730.054*
C90.3171 (2)0.0585 (2)0.70536 (16)0.0398 (3)
H9A0.3717−0.04250.76960.048*
H9B0.39360.02640.61680.048*
C100.1214 (2)0.0854 (2)0.68464 (17)0.0461 (4)
H10A0.04110.13450.76990.055*
H10B0.1236−0.03310.66730.055*
C110.0384 (3)0.2133 (3)0.5651 (2)0.0662 (5)
H11A0.03390.33150.58210.099*
H11B−0.08600.22580.55750.099*
H11C0.11490.16370.47970.099*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0535 (3)0.0410 (2)0.0377 (2)−0.02944 (19)0.01063 (16)−0.00505 (15)
O10.0991 (11)0.0410 (7)0.0630 (8)−0.0439 (7)0.0020 (7)−0.0069 (6)
O20.0442 (7)0.0516 (7)0.0801 (9)−0.0240 (6)0.0097 (6)−0.0051 (6)
O30.1086 (11)0.0773 (9)0.0367 (7)−0.0615 (9)0.0177 (7)−0.0119 (6)
N10.0526 (7)0.0369 (6)0.0339 (6)−0.0295 (6)0.0055 (5)−0.0063 (5)
C10.0338 (7)0.0295 (7)0.0321 (7)−0.0157 (5)−0.0007 (5)−0.0004 (5)
C20.0499 (9)0.0319 (7)0.0438 (8)−0.0219 (7)0.0001 (6)0.0035 (6)
C30.0532 (10)0.0467 (9)0.0407 (9)−0.0222 (8)−0.0008 (7)0.0127 (7)
C40.0580 (10)0.0567 (10)0.0307 (7)−0.0227 (8)−0.0012 (7)0.0008 (7)
C50.0479 (9)0.0413 (8)0.0382 (8)−0.0201 (7)−0.0012 (6)−0.0070 (6)
C60.0338 (7)0.0294 (7)0.0353 (7)−0.0151 (5)−0.0021 (5)−0.0008 (5)
C70.0419 (8)0.0297 (7)0.0438 (8)−0.0184 (6)−0.0010 (6)−0.0004 (6)
C80.0595 (10)0.0351 (8)0.0426 (8)−0.0249 (7)0.0003 (7)0.0064 (6)
C90.0488 (9)0.0321 (7)0.0419 (8)−0.0211 (6)0.0016 (6)−0.0089 (6)
C100.0573 (10)0.0497 (9)0.0436 (8)−0.0347 (8)−0.0039 (7)−0.0002 (7)
C110.0646 (12)0.0862 (15)0.0562 (11)−0.0401 (11)−0.0128 (9)0.0161 (10)

Geometric parameters (Å, °)

S1—O21.4191 (14)C5—C61.3915 (19)
S1—O31.4282 (13)C5—H50.9300
S1—N11.6464 (12)C6—C71.473 (2)
S1—C81.7535 (16)C7—C81.509 (2)
O1—C71.2069 (18)C8—H8A0.9700
N1—C11.4178 (17)C8—H8B0.9700
N1—C91.4808 (17)C9—C101.508 (2)
C1—C21.3982 (19)C9—H9A0.9700
C1—C61.4070 (18)C9—H9B0.9700
C2—C31.375 (2)C10—C111.513 (3)
C2—H20.9300C10—H10A0.9700
C3—C41.380 (2)C10—H10B0.9700
C3—H30.9300C11—H11A0.9600
C4—C51.373 (2)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
O2—S1—O3117.98 (9)O1—C7—C6122.99 (14)
O2—S1—N1111.54 (7)O1—C7—C8118.84 (13)
O3—S1—N1107.86 (7)C6—C7—C8118.14 (12)
O2—S1—C8107.87 (8)C7—C8—S1111.75 (10)
O3—S1—C8110.27 (9)C7—C8—H8A109.3
N1—S1—C899.80 (7)S1—C8—H8A109.3
C1—N1—C9120.81 (11)C7—C8—H8B109.3
C1—N1—S1116.96 (9)S1—C8—H8B109.3
C9—N1—S1117.37 (10)H8A—C8—H8B107.9
C2—C1—C6118.28 (13)N1—C9—C10111.75 (13)
C2—C1—N1120.18 (12)N1—C9—H9A109.3
C6—C1—N1121.53 (12)C10—C9—H9A109.3
C3—C2—C1120.42 (14)N1—C9—H9B109.3
C3—C2—H2119.8C10—C9—H9B109.3
C1—C2—H2119.8H9A—C9—H9B107.9
C2—C3—C4121.32 (14)C9—C10—C11113.28 (15)
C2—C3—H3119.3C9—C10—H10A108.9
C4—C3—H3119.3C11—C10—H10A108.9
C5—C4—C3118.96 (14)C9—C10—H10B108.9
C5—C4—H4120.5C11—C10—H10B108.9
C3—C4—H4120.5H10A—C10—H10B107.7
C4—C5—C6121.20 (14)C10—C11—H11A109.5
C4—C5—H5119.4C10—C11—H11B109.5
C6—C5—H5119.4H11A—C11—H11B109.5
C5—C6—C1119.74 (13)C10—C11—H11C109.5
C5—C6—C7117.26 (12)H11A—C11—H11C109.5
C1—C6—C7122.99 (12)H11B—C11—H11C109.5
O2—S1—N1—C159.41 (12)C2—C1—C6—C53.0 (2)
O3—S1—N1—C1−169.51 (11)N1—C1—C6—C5−178.04 (13)
C8—S1—N1—C1−54.35 (12)C2—C1—C6—C7−176.18 (14)
O2—S1—N1—C9−96.15 (12)N1—C1—C6—C72.8 (2)
O3—S1—N1—C934.93 (14)C5—C6—C7—O1−0.1 (2)
C8—S1—N1—C9150.09 (12)C1—C6—C7—O1179.13 (15)
C9—N1—C1—C23.0 (2)C5—C6—C7—C8−178.19 (13)
S1—N1—C1—C2−151.64 (12)C1—C6—C7—C81.0 (2)
C9—N1—C1—C6−175.92 (13)O1—C7—C8—S1148.80 (14)
S1—N1—C1—C629.41 (17)C6—C7—C8—S1−32.99 (17)
C6—C1—C2—C3−2.2 (2)O2—S1—C8—C7−61.58 (13)
N1—C1—C2—C3178.80 (14)O3—S1—C8—C7168.29 (11)
C1—C2—C3—C4−0.5 (2)N1—S1—C8—C754.98 (12)
C2—C3—C4—C52.4 (3)C1—N1—C9—C1082.62 (17)
C3—C4—C5—C6−1.6 (3)S1—N1—C9—C10−122.81 (12)
C4—C5—C6—C1−1.1 (2)N1—C9—C10—C1170.53 (19)
C4—C5—C6—C7178.08 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.962.573.346 (2)138
C8—H8A···O3ii0.972.553.453 (2)155
C2—H2···O1iii0.932.553.4665 (19)170

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5369).

References

  • Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009). Acta Cryst. E65, o430. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Volovenko, Y., Volovenko, T. & Popov, K. (2007). J. Heterocycl. Chem.44, 1413-1419.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography