PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2882.
Published online 2010 October 23. doi:  10.1107/S1600536810041772
PMCID: PMC3009033

2,5-Dimethyl-7,8,9,10-tetra­hydro­cyclo­hepta­[b]indol-6(5H)-one

Abstract

In the title mol­ecule, C15H17NO, the dihedral angle between the benzene and pyrrole rings is 1.45 (13)°. The cyclo­heptene ring adopts a slightly distorted boat conformation. In the crystal structure, inter­molecular C—H(...)O hydrogen bonds are found.

Related literature

For the importance of the indole nucleus, see: Satoshi & Tominari (2001 [triangle]). For the synthesis of fused cyclo­hept[b]indole derivatives, see: Butin et al. (2010 [triangle]); Fujimori & Yamane (1978 [triangle]); Wahlström et al. (2007 [triangle]). For heteroannulated cyclo­hept[b]indole derivatives, see: Kavitha & Prasad (1999 [triangle], 2001 [triangle]). For crystallographic studies of cyclo­hept[b]indoles, see: Sridharan et al. (2008a [triangle],b [triangle], 2009 [triangle]); Yamuna et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2882-scheme1.jpg

Experimental

Crystal data

  • C15H17NO
  • M r = 227.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2882-efi1.jpg
  • a = 15.5889 (3) Å
  • b = 10.5707 (2) Å
  • c = 7.5388 (2) Å
  • V = 1242.29 (5) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.59 mm−1
  • T = 295 K
  • 0.49 × 0.32 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010 [triangle]) T min = 0.887, T max = 1.000
  • 1327 measured reflections
  • 1327 independent reflections
  • 1285 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.129
  • S = 1.09
  • 1327 reflections
  • 156 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041772/hg2724sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041772/hg2724Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Since the indole nucleus is present in a large number of naturally occurring as well as biologically active molecules, indole derivatives are of considerable contemporary interest and importance (Satoshi & Tominari, 2001). Due to the importance of these compounds, several fused cyclohept[b]indole derivatives have been synthesized (Butin et al., 2010); Fujimori & Yamane, 1978); Wahlström et al., 2007)). In our laboratory 7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one was used as a synthon to derive various heteroannulated cyclohept[b]indole derivatives (Kavitha & Prasad 1999, 2001). Recently we have reported crystallographic studies for some cyclohept[b]indoles from our laboratory (Sridharan et al., 2008a,b, 2009); Yamuna et al., 2010). For optimal drug design, knowledge of the exact geometry and shape of the molecule is essential and thus we decided to subject the compounds synthesized to single-crystal X-ray diffraction studies.

The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. In the title molecule, C15H17NO, the dihedral angle between the benzene and pyrrole rings is 1.45 (13)°. The cycloheptene ring adopts a slightly distorted boat conformation. In the crystal structure intermolecular C—H···O hydrogen bonds are found (Table 1, Fig. 2).

Experimental

To a solution of 2-methyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one (0.213 g, 0.001 mol) in 5 ml acetone added powdered KOH (0.280 g, 0.005 mol) in ice cold condition. After few minutes methyl iodide (0.13 ml, 0.002 mol) was added drop by drop with vigorous stirring and the reaction mixture was stirrired for 15 min at room temperature. Benzene was added to the reaction mixture and insoluble materials are removed by filtration. The benzene solution was washed with saturated NaCl solution, dried by using Na2SO4 and evaporation yielded the title compound (0.204 g, 90%). This was recrystallized from benzene and ethyl acetate mixture.

Refinement

Owing to the absence of any anamalous scatterers in the molecule, the Friedel pairs were merged. The absolute structure in the present model have been chosen arbitrarily. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2 - 1.5 times Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
The molecular packing of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C15H17NODx = 1.215 Mg m3
Mr = 227.30Melting point: 346 K
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2acCell parameters from 2494 reflections
a = 15.5889 (3) Åθ = 5.1–73.7°
b = 10.5707 (2) ŵ = 0.59 mm1
c = 7.5388 (2) ÅT = 295 K
V = 1242.29 (5) Å3Plate, pale yellow-orange
Z = 40.49 × 0.32 × 0.12 mm
F(000) = 488

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer1327 independent reflections
Radiation source: Enhance (Cu) X-ray Source1285 reflections with I > 2σ(I)
graphiteRint = 0.0000
Detector resolution: 10.5081 pixels mm-1θmax = 73.8°, θmin = 5.1°
ω scansh = 0→19
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)k = 0→13
Tmin = 0.887, Tmax = 1.000l = 0→9
1327 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.097P)2 + 0.041P] where P = (Fo2 + 2Fc2)/3
1327 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = −0.16 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O60.18943 (11)0.4617 (2)0.5238 (5)0.1003 (11)
N50.29328 (12)0.68004 (18)0.4471 (3)0.0561 (6)
C10.51734 (15)0.75136 (19)0.4664 (3)0.0534 (6)
C20.52228 (19)0.8760 (2)0.4100 (4)0.0667 (8)
C30.4462 (2)0.9404 (2)0.3639 (5)0.0789 (9)
C40.3667 (2)0.8856 (2)0.3734 (4)0.0738 (9)
C4A0.36199 (15)0.7584 (2)0.4294 (3)0.0534 (6)
C50.20448 (16)0.7199 (3)0.4212 (5)0.0757 (9)
C5A0.32271 (11)0.56233 (19)0.5029 (3)0.0478 (5)
C60.26683 (13)0.4538 (2)0.5353 (3)0.0573 (6)
C70.30755 (16)0.3306 (2)0.5819 (5)0.0711 (9)
C80.37596 (17)0.2890 (3)0.4485 (6)0.0817 (12)
C90.46482 (15)0.3391 (2)0.4821 (4)0.0614 (7)
C100.46951 (13)0.46270 (19)0.5847 (4)0.0536 (6)
C10A0.41137 (11)0.56610 (16)0.5207 (3)0.0434 (5)
C10B0.43718 (13)0.69124 (18)0.4753 (3)0.0469 (5)
C210.6075 (3)0.9427 (3)0.3943 (6)0.0945 (13)
H10.566860.707860.498200.0640*
H30.450221.023720.325320.0947*
H40.317520.930660.343950.0886*
H5A0.202870.790650.341420.1136*
H5B0.180190.744100.533210.1136*
H5C0.172000.651200.372010.1136*
H7A0.263450.266050.588450.0853*
H7B0.333620.337650.698350.0853*
H8A0.378400.197260.448330.0980*
H8B0.358080.315610.331100.0980*
H9A0.493070.350960.368710.0737*
H9B0.496890.275430.546910.0737*
H10A0.456050.445400.707980.0643*
H10B0.528130.493340.580320.0643*
H21A0.652870.884800.422750.1418*
H21B0.609001.012910.475110.1418*
H21C0.614810.972960.275210.1418*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O60.0441 (8)0.0967 (14)0.160 (3)−0.0048 (8)0.0028 (14)0.0057 (18)
N50.0518 (9)0.0564 (10)0.0600 (11)0.0183 (8)−0.0059 (8)−0.0087 (9)
C10.0627 (11)0.0451 (9)0.0524 (12)−0.0035 (8)0.0046 (9)−0.0064 (8)
C20.0934 (17)0.0432 (10)0.0636 (14)−0.0093 (10)0.0126 (13)−0.0110 (11)
C30.122 (2)0.0374 (9)0.0772 (18)−0.0010 (12)0.0128 (18)−0.0027 (12)
C40.1000 (19)0.0475 (12)0.0740 (17)0.0272 (12)−0.0020 (14)−0.0022 (12)
C4A0.0629 (12)0.0465 (10)0.0509 (10)0.0129 (8)0.0003 (9)−0.0069 (9)
C50.0588 (13)0.0851 (17)0.0833 (17)0.0332 (13)−0.0132 (13)−0.0156 (16)
C5A0.0438 (9)0.0511 (10)0.0485 (9)0.0080 (7)0.0005 (8)−0.0059 (9)
C60.0440 (9)0.0653 (11)0.0625 (12)−0.0037 (8)0.0062 (9)−0.0094 (11)
C70.0565 (11)0.0587 (12)0.098 (2)−0.0114 (10)0.0112 (13)0.0050 (15)
C80.0641 (13)0.0681 (14)0.113 (3)0.0050 (11)−0.0031 (16)−0.0378 (19)
C90.0596 (11)0.0469 (10)0.0777 (15)0.0111 (8)0.0124 (11)0.0058 (11)
C100.0425 (8)0.0492 (10)0.0691 (14)0.0037 (7)−0.0056 (9)0.0103 (10)
C10A0.0429 (8)0.0430 (9)0.0444 (9)0.0042 (7)−0.0001 (8)−0.0025 (8)
C10B0.0567 (10)0.0404 (9)0.0436 (9)0.0062 (7)0.0024 (8)−0.0033 (8)
C210.120 (3)0.0646 (15)0.099 (2)−0.0374 (17)0.018 (2)−0.0114 (17)

Geometric parameters (Å, °)

O6—C61.213 (3)C10A—C10B1.424 (3)
N5—C4A1.361 (3)C1—H10.9300
N5—C51.460 (3)C3—H30.9300
N5—C5A1.391 (3)C4—H40.9300
C1—C21.387 (3)C5—H5A0.9600
C1—C10B1.404 (3)C5—H5B0.9600
C2—C31.411 (4)C5—H5C0.9600
C2—C211.509 (5)C7—H7A0.9700
C3—C41.370 (4)C7—H7B0.9700
C4—C4A1.411 (3)C8—H8A0.9700
C4A—C10B1.413 (3)C8—H8B0.9700
C5A—C61.461 (3)C9—H9A0.9700
C5A—C10A1.389 (2)C9—H9B0.9700
C6—C71.491 (3)C10—H10A0.9700
C7—C81.530 (5)C10—H10B0.9700
C8—C91.505 (4)C21—H21A0.9600
C9—C101.520 (3)C21—H21B0.9600
C10—C10A1.500 (3)C21—H21C0.9600
O6···N52.878 (3)H1···O6viii2.6300
O6···C52.847 (4)H3···H8Avi2.3400
O6···H5C2.3200H4···C52.9000
O6···H7Bi2.8100H4···H5A2.3200
O6···H8Bii2.8800H5A···C42.7500
O6···H1iii2.6300H5A···H42.3200
O6···H10Biii2.5900H5B···C4ii3.0600
N5···O62.878 (3)H5B···C4Aii3.0600
C5···O62.847 (4)H5C···O62.3200
C5···C5Ai3.591 (4)H5C···C62.8400
C5A···C5ii3.591 (4)H5C···C5Ai2.9400
C1···H10Aiv2.8800H5C···C10Ai3.0800
C1···H10B2.8600H7B···C102.6400
C3···H21Bv3.0900H7B···C10A3.0200
C3···H8Avi2.9800H7B···H10A2.2200
C4···H5Bi3.0600H7B···O6ii2.8100
C4···H5A2.7500H8A···C3ix2.9800
C4A···H5Bi3.0600H8A···H3ix2.3400
C5···H42.9000H8B···C5A2.9600
C5A···H8B2.9600H8B···O6i2.8800
C5A···H5Cii2.9400H9A···C10iv2.9700
C6···H5C2.8400H9A···H10Aiv2.5900
C7···H10A2.7800H10A···C72.7800
C10···H13.0700H10A···H7B2.2200
C10···H7B2.6400H10A···C1vii2.8800
C10···H9Avii2.9700H10A···C10Bvii2.9900
C10A···H7B3.0200H10A···H9Avii2.5900
C10A···H5Cii3.0800H10B···C12.8600
C10B···H10Aiv2.9900H10B···H12.4300
H1···C103.0700H10B···O6viii2.5900
H1···H10B2.4300H21A···H12.3700
H1···H21A2.3700H21B···C3x3.0900
C4A—N5—C5123.9 (2)C4A—C4—H4121.00
C4A—N5—C5A108.33 (17)N5—C5—H5A109.00
C5—N5—C5A127.7 (2)N5—C5—H5B109.00
C2—C1—C10B119.6 (2)N5—C5—H5C109.00
C1—C2—C3119.2 (2)H5A—C5—H5B109.00
C1—C2—C21121.1 (3)H5A—C5—H5C109.00
C3—C2—C21119.7 (2)H5B—C5—H5C109.00
C2—C3—C4122.9 (2)C6—C7—H7A109.00
C3—C4—C4A117.8 (2)C6—C7—H7B109.00
N5—C4A—C4130.6 (2)C8—C7—H7A109.00
N5—C4A—C10B108.85 (18)C8—C7—H7B109.00
C4—C4A—C10B120.6 (2)H7A—C7—H7B108.00
N5—C5A—C6123.79 (17)C7—C8—H8A108.00
N5—C5A—C10A109.37 (17)C7—C8—H8B108.00
C6—C5A—C10A126.84 (18)C9—C8—H8A108.00
O6—C6—C5A121.8 (2)C9—C8—H8B108.00
O6—C6—C7120.1 (2)H8A—C8—H8B107.00
C5A—C6—C7118.13 (18)C8—C9—H9A108.00
C6—C7—C8113.1 (3)C8—C9—H9B108.00
C7—C8—C9115.5 (3)C10—C9—H9A108.00
C8—C9—C10115.6 (2)C10—C9—H9B108.00
C9—C10—C10A115.7 (2)H9A—C9—H9B107.00
C5A—C10A—C10127.70 (17)C9—C10—H10A108.00
C5A—C10A—C10B106.53 (16)C9—C10—H10B108.00
C10—C10A—C10B125.70 (16)C10A—C10—H10A108.00
C1—C10B—C4A119.95 (18)C10A—C10—H10B108.00
C1—C10B—C10A133.12 (19)H10A—C10—H10B107.00
C4A—C10B—C10A106.92 (17)C2—C21—H21A109.00
C2—C1—H1120.00C2—C21—H21B109.00
C10B—C1—H1120.00C2—C21—H21C109.00
C2—C3—H3119.00H21A—C21—H21B109.00
C4—C3—H3119.00H21A—C21—H21C110.00
C3—C4—H4121.00H21B—C21—H21C109.00
C5—N5—C4A—C4−5.0 (4)C4—C4A—C10B—C10A−178.4 (2)
C5—N5—C4A—C10B176.1 (3)N5—C5A—C6—O6−3.8 (4)
C5A—N5—C4A—C4178.6 (3)N5—C5A—C6—C7175.6 (2)
C5A—N5—C4A—C10B−0.4 (3)C10A—C5A—C6—O6176.5 (3)
C4A—N5—C5A—C6−179.7 (2)C10A—C5A—C6—C7−4.1 (4)
C4A—N5—C5A—C10A0.0 (3)N5—C5A—C10A—C10177.3 (2)
C5—N5—C5A—C64.0 (4)N5—C5A—C10A—C10B0.4 (3)
C5—N5—C5A—C10A−176.4 (3)C6—C5A—C10A—C10−3.1 (4)
C10B—C1—C2—C30.5 (4)C6—C5A—C10A—C10B−179.9 (2)
C10B—C1—C2—C21−178.4 (3)O6—C6—C7—C8126.1 (3)
C2—C1—C10B—C4A−0.9 (3)C5A—C6—C7—C8−53.3 (3)
C2—C1—C10B—C10A177.5 (3)C6—C7—C8—C986.9 (3)
C1—C2—C3—C40.5 (5)C7—C8—C9—C10−25.7 (4)
C21—C2—C3—C4179.5 (3)C8—C9—C10—C10A−48.2 (3)
C2—C3—C4—C4A−1.0 (5)C9—C10—C10A—C5A57.1 (3)
C3—C4—C4A—N5−178.3 (3)C9—C10—C10A—C10B−126.6 (2)
C3—C4—C4A—C10B0.6 (4)C5A—C10A—C10B—C1−179.3 (2)
N5—C4A—C10B—C1179.5 (2)C5A—C10A—C10B—C4A−0.7 (3)
N5—C4A—C10B—C10A0.6 (3)C10—C10A—C10B—C13.9 (4)
C4—C4A—C10B—C10.4 (3)C10—C10A—C10B—C4A−177.5 (2)

Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) −x+1/2, y, z+1/2; (iii) x−1/2, −y+1, z; (iv) −x+1, −y+1, z−1/2; (v) −x+1, −y+2, z−1/2; (vi) x, y+1, z; (vii) −x+1, −y+1, z+1/2; (viii) x+1/2, −y+1, z; (ix) x, y−1, z; (x) −x+1, −y+2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10B···O6viii0.972.593.550 (3)168

Symmetry codes: (viii) x+1/2, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2724).

References

  • Butin, A. V., Kostyukova, N. O., Tsiunchik, F. A., Lysenko, S. A. & Trushkov, I. V. (2010). Chem. Heterocycl. Compd, 46, 117–119.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fujimori, K. & Yamane, K. (1978). Bull. Chem. Soc. Jpn, 51, 3579–3581.
  • Kavitha, C. & Prasad, K. J. R. (1999). Heterocycl. Commun.5, 481–488.
  • Kavitha, C. & Prasad, K. J. R. (2001). Indian J. Chem. Sect. B, 40, 601–602.
  • Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  • Satoshi, H. & Tominari, C. (2001). Nat. Prod. Rep.18, 66–87.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Butcher, R. J. (2008a). Acta Cryst. E64, o1697. [PMC free article] [PubMed]
  • Sridharan, M., Prasad, K. J. R., Ngendahimana, A. & Zeller, M. (2008b). Acta Cryst. E64, o1207. [PMC free article] [PubMed]
  • Sridharan, M., Rajendra Prasad, K. J., Thomas Gunaseelan, A., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o698. [PMC free article] [PubMed]
  • Wahlström, N., Slatt, J., Stensland, B., Ertan, A., Bergman, J. & Janosik, T. (2007). J. Org. Chem.72, 5886–5889. [PubMed]
  • Yamuna, E., Sridharan, M., Prasad, K. J. R. & Zeller, M. (2010). J. Chem. Crystallogr.40, 402–411.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography