PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1462.
Published online 2010 October 23. doi:  10.1107/S1600536810041607
PMCID: PMC3009031

catena-Poly[[[diaquacadmium(II)]bis[μ-2-(pyridinium-1-yl)butanedioato]-κ2 O 1:O 42 O 4:O 1] tetrahydrate], a polymeric chain structure

Abstract

In the title complex, {[Cd(C9H8NO4)2(H2O)2]·4H2O}n, the CdII atom (site symmetry 2) is coordinated by six O atoms from four crystallographically related 1-(1,2-dicarboxyl­ate)pyridin-1-ium ligands (L) and from two water molecules in a distorted octahedral geometry. Paired L ligands connect CdII atoms into a chain motif parallel to [001], which is further inter­linked by O—H(...)O hydrogen bonds into a three-dimensional supra­molecular net.

Related literature

For ligands including pyridyl and carboxyl­ate groups as building tectons of the supra­molecular lattice in inorganic–organic coordination chemistry, see: Batten (2001 [triangle]); Kitagawa & Matsuda (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1462-scheme1.jpg

Experimental

Crystal data

  • [Cd(C9H8NO4)2(H2O)2]·4H2O
  • M r = 608.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1462-efi1.jpg
  • a = 17.612 (4) Å
  • b = 9.798 (2) Å
  • c = 14.076 (3) Å
  • β = 102.63 (3)°
  • V = 2370.2 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.00 mm−1
  • T = 294 K
  • 0.28 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.768, T max = 0.826
  • 2598 measured reflections
  • 2086 independent reflections
  • 1854 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.092
  • S = 1.14
  • 2086 reflections
  • 159 parameters
  • H-atom parameters constrained
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810041607/kj2155sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041607/kj2155Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Versatile ligands involving pyridyl and carboxylate groups have been proven to be effective building tectons of supramolecular lattice in the field of inorganic-organic coordination chemistry (Batten, 2001; Kitagawa & Matsuda, 2007).

In this paper, 1-(1,2-dicarboxyethyl)pyridin-1-ium chloride was employed as a bridging ligand to assemble with CdII into a one-dimensional polymeric chain motif, in which the coordination geometry of CdII can be portrayed as a distorted octahedron (CdO6) (Fig. 1). With the aid of the two monodentate carboxylates of L, the adjacent CdII ions are further interlinked to afford a chain motif along the [001] direction (Fig. 2). Additionally, strong O—H···O bonds are found between the coordinated water ligands, carboxylates, and lattice water molecules, to generating a complicated three-dimensional supramoleculecular lattice (Fig. 3).

Experimental

A water solution (8 ml) containing CdCl2(18.4 mg, 0.1 mmol) and 1-(1,2-dicarboxyethyl)pyridin-1-ium chloride (23.1 mg, 0.1 mmol) was heated to 373 K for 24 h and subsequently cooled to room temperature at a rate of 1 K/h. Colorless block shape crystals were obtained.

Refinement

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distance of 0.93 Å, and Uiso(H) = 1.2Ueq(C). The O-bound hydrogen atoms were first located in difference Fourier maps, and then fixed in calculated sites, with d(O—H) = 0.84–0.90Å.

Figures

Fig. 1.
The molecular structure with atom-labelling scheme and ellipsoids drawn at the 50% probability level. Symmetry operations: (i) -x+2, y, -z+1/2; (ii) x, -y+1, z-1/2; (iii) -x+2, -y+1, -z+1.
Fig. 2.
View of the one-dimensional polymeric chain along the [001] direction.
Fig. 3.
Part of the three-dimensional supramolecular net, showing the hydrogen bonds in red dashed lines. H atoms not involved in H-bonsing have been omitted for clarity.

Crystal data

[Cd(C9H8NO4)2(H2O)2]·4H2OF(000) = 1240
Mr = 608.82Dx = 1.706 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.612 (4) ÅCell parameters from 2290 reflections
b = 9.798 (2) Åθ = 2.5–22.0°
c = 14.076 (3) ŵ = 1.00 mm1
β = 102.63 (3)°T = 294 K
V = 2370.2 (8) Å3Block, colourless
Z = 40.28 × 0.22 × 0.20 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer2086 independent reflections
Radiation source: fine-focus sealed tube1854 reflections with I > 2σ(I)
graphiteRint = 0.026
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −1→20
Tmin = 0.768, Tmax = 0.826k = −1→11
2598 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0445P)2 + 4.7881P] where P = (Fo2 + 2Fc2)/3
2086 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd11.00000.64349 (4)0.25000.02528 (15)
O10.9894 (2)0.8142 (3)0.3555 (2)0.0422 (8)
O20.9118 (2)0.9428 (3)0.4220 (2)0.0462 (8)
O31.00096 (16)0.5232 (3)0.6354 (2)0.0341 (7)
O41.12761 (18)0.5582 (4)0.6576 (3)0.0524 (9)
O50.8676 (2)0.6277 (4)0.2046 (3)0.0687 (12)
H5A0.86260.57920.25300.103*
H5B0.84320.70310.19690.103*
O60.7816 (2)0.0490 (4)0.4730 (3)0.0579 (10)
H6A0.75350.09870.42970.087*
H6B0.82190.01420.45900.087*
O70.2566 (2)0.3103 (4)0.1327 (3)0.0616 (11)
H7A0.26470.34310.08080.092*
H7B0.21220.34690.14360.092*
N10.91334 (18)0.7734 (3)0.5733 (2)0.0239 (7)
C10.9343 (2)0.8872 (4)0.6275 (3)0.0280 (9)
H10.97790.93670.62090.034*
C20.8904 (3)0.9292 (5)0.6926 (3)0.0365 (10)
H20.90511.00620.73080.044*
C30.8258 (3)0.8577 (6)0.7007 (3)0.0471 (12)
H30.79570.88650.74370.057*
C40.8052 (3)0.7424 (6)0.6447 (3)0.0466 (12)
H40.76120.69270.64970.056*
C50.8502 (3)0.7015 (5)0.5813 (3)0.0349 (10)
H50.83680.62340.54380.042*
C60.9595 (2)0.7326 (4)0.5014 (3)0.0255 (8)
H60.93770.64660.47180.031*
C70.9515 (2)0.8395 (4)0.4189 (3)0.0275 (9)
C81.0448 (2)0.7062 (4)0.5496 (3)0.0285 (9)
H8A1.07320.68940.49900.034*
H8B1.06610.78820.58400.034*
C91.0585 (2)0.5875 (4)0.6204 (3)0.0281 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0303 (2)0.0218 (2)0.0267 (2)0.0000.01280 (16)0.000
O10.079 (2)0.0277 (16)0.0296 (15)0.0071 (15)0.0322 (16)0.0015 (12)
O20.068 (2)0.0403 (19)0.0370 (17)0.0216 (17)0.0266 (16)0.0156 (15)
O30.0361 (16)0.0282 (16)0.0382 (16)−0.0014 (13)0.0082 (13)0.0115 (13)
O40.0336 (18)0.053 (2)0.068 (2)0.0012 (16)0.0067 (16)0.0288 (19)
O50.0371 (19)0.071 (3)0.097 (3)0.0077 (19)0.0120 (19)0.046 (2)
O60.054 (2)0.063 (2)0.059 (2)0.0183 (19)0.0183 (17)0.0063 (19)
O70.052 (2)0.057 (2)0.083 (3)0.0200 (18)0.031 (2)0.030 (2)
N10.0297 (17)0.0241 (17)0.0187 (15)−0.0018 (14)0.0069 (13)0.0010 (13)
C10.036 (2)0.025 (2)0.0237 (18)−0.0027 (17)0.0075 (16)0.0009 (15)
C20.049 (3)0.039 (2)0.0236 (19)0.008 (2)0.0114 (18)−0.0039 (19)
C30.046 (3)0.066 (3)0.037 (2)0.009 (3)0.025 (2)0.005 (3)
C40.040 (3)0.058 (3)0.046 (3)−0.002 (2)0.019 (2)0.010 (2)
C50.040 (2)0.033 (2)0.031 (2)−0.007 (2)0.0091 (18)0.0010 (18)
C60.036 (2)0.0190 (19)0.0241 (19)0.0006 (17)0.0128 (16)−0.0013 (15)
C70.041 (2)0.022 (2)0.0219 (18)0.0005 (18)0.0113 (16)0.0026 (16)
C80.034 (2)0.024 (2)0.030 (2)−0.0007 (18)0.0127 (17)0.0053 (17)
C90.038 (2)0.0198 (19)0.027 (2)−0.0006 (18)0.0087 (17)−0.0016 (16)

Geometric parameters (Å, °)

Cd1—O12.271 (3)N1—C11.356 (5)
Cd1—O1i2.271 (3)N1—C61.485 (5)
Cd1—O5i2.284 (3)C1—C21.384 (5)
Cd1—O52.284 (3)C1—H10.9300
Cd1—O3ii2.298 (3)C2—C31.363 (7)
Cd1—O3iii2.298 (3)C2—H20.9300
O1—C71.250 (5)C3—C41.381 (7)
O2—C71.236 (5)C3—H30.9300
O3—C91.250 (5)C4—C51.376 (6)
O3—Cd1iii2.298 (3)C4—H40.9300
O4—C91.248 (5)C5—H50.9300
O5—H5A0.8501C6—C81.528 (5)
O5—H5B0.8500C6—C71.548 (5)
O6—H6A0.8500C6—H60.9800
O6—H6B0.8500C8—C91.517 (6)
O7—H7A0.8391C8—H8A0.9700
O7—H7B0.9029C8—H8B0.9700
N1—C51.341 (5)
O1—Cd1—O1i85.13 (14)C3—C2—H2120.0
O1—Cd1—O5i95.28 (13)C1—C2—H2120.0
O1i—Cd1—O5i90.45 (15)C2—C3—C4119.5 (4)
O1—Cd1—O590.45 (15)C2—C3—H3120.3
O1i—Cd1—O595.28 (13)C4—C3—H3120.3
O5i—Cd1—O5172.2 (2)C5—C4—C3119.5 (4)
O1—Cd1—O3ii175.18 (12)C5—C4—H4120.3
O1i—Cd1—O3ii92.87 (10)C3—C4—H4120.3
O5i—Cd1—O3ii89.11 (12)N1—C5—C4120.5 (4)
O5—Cd1—O3ii85.37 (14)N1—C5—H5119.7
O1—Cd1—O3iii92.87 (10)C4—C5—H5119.7
O1i—Cd1—O3iii175.18 (12)N1—C6—C8112.0 (3)
O5i—Cd1—O3iii85.37 (14)N1—C6—C7110.8 (3)
O5—Cd1—O3iii89.11 (12)C8—C6—C7111.5 (3)
O3ii—Cd1—O3iii89.46 (15)N1—C6—H6107.4
C7—O1—Cd1138.2 (3)C8—C6—H6107.4
C9—O3—Cd1iii127.4 (3)C7—C6—H6107.4
Cd1—O5—H5A95.3O2—C7—O1125.6 (4)
Cd1—O5—H5B115.7O2—C7—C6119.1 (3)
H5A—O5—H5B116.7O1—C7—C6115.2 (3)
H6A—O6—H6B116.6C9—C8—C6114.9 (3)
H7A—O7—H7B108.3C9—C8—H8A108.5
C5—N1—C1120.9 (3)C6—C8—H8A108.5
C5—N1—C6120.2 (3)C9—C8—H8B108.5
C1—N1—C6118.8 (3)C6—C8—H8B108.5
N1—C1—C2119.6 (4)H8A—C8—H8B107.5
N1—C1—H1120.2O4—C9—O3124.4 (4)
C2—C1—H1120.2O4—C9—C8116.9 (4)
C3—C2—C1120.0 (4)O3—C9—C8118.6 (4)
O1i—Cd1—O1—C7141.1 (5)C5—N1—C6—C7111.7 (4)
O5i—Cd1—O1—C7−128.9 (4)C1—N1—C6—C7−65.7 (4)
O5—Cd1—O1—C745.9 (4)Cd1—O1—C7—O2−126.2 (4)
O3iii—Cd1—O1—C7−43.3 (4)Cd1—O1—C7—C656.5 (6)
C5—N1—C1—C20.5 (6)N1—C6—C7—O21.7 (5)
C6—N1—C1—C2178.0 (3)C8—C6—C7—O2−123.8 (4)
N1—C1—C2—C3−1.2 (6)N1—C6—C7—O1179.2 (3)
C1—C2—C3—C41.0 (7)C8—C6—C7—O153.6 (5)
C2—C3—C4—C5−0.1 (7)N1—C6—C8—C964.2 (4)
C1—N1—C5—C40.3 (6)C7—C6—C8—C9−171.0 (3)
C6—N1—C5—C4−177.1 (4)Cd1iii—O3—C9—O410.1 (6)
C3—C4—C5—N1−0.5 (7)Cd1iii—O3—C9—C8−172.2 (3)
C5—N1—C6—C8−123.1 (4)C6—C8—C9—O4176.5 (4)
C1—N1—C6—C859.5 (4)C6—C8—C9—O3−1.3 (5)

Symmetry codes: (i) −x+2, y, −z+1/2; (ii) x, −y+1, z−1/2; (iii) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O4iii0.851.832.649 (6)162
O5—H5B···O7iv0.851.912.680 (5)150
O6—H6A···O7v0.852.242.964 (6)143
O6—H6B···O2vi0.851.902.753 (5)177
O7—H7A···O6vii0.841.932.753 (6)169
O7—H7B···O4viii0.901.802.700 (5)172

Symmetry codes: (iii) −x+2, −y+1, −z+1; (iv) x+1/2, y+1/2, z; (v) −x+1, y, −z+1/2; (vi) x, y−1, z; (vii) x−1/2, −y+1/2, z−1/2; (viii) x−1, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2155).

References

  • Batten, S. R. (2001). CrystEngComm, 18, 1–7.
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev.251, 2940–2509.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography