PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1443–m1444.
Published online 2010 October 23. doi:  10.1107/S1600536810042054
PMCID: PMC3009030

Diaqua­bis­(4-carb­oxy-2-propyl-1H-imidazole-5-carboxyl­ato-κ2 N 3,O 4)cobalt(II) N,N-dimethyl­formamide disolvate

Abstract

In the title complex, [Co(C8H9N2O4)2(H2O)2]·2C3H7NO, the CoII cation (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-66-m1443-efi1.jpg) is six-coordinated by two 5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ate ligands and two water mol­ecules in a distorted octa­hedral environment. In the crystal structure, the complex mol­ecules and dimethyl­formamide solvent mol­ecules are linked by extensive O—H(...)O and N—H(...)O hydrogen bonding into sheets lying parallel to (21An external file that holds a picture, illustration, etc.
Object name is e-66-m1443-efi2.jpg).

Related literature

For our past work based on the 2-propyl-1H-imidazole-4,5-carboxyl­ate (H3pimda) ligand, see: Yan et al. (2010 [triangle]); Li et al. (2010a [triangle],b [triangle],c [triangle],d [triangle]); Song et al. (2010 [triangle]); He et al. (2010 [triangle]); Fan et al. (2010 [triangle]). For Co complexes of a similar ligand, see: Lu et al. (2008 [triangle]); Wang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1443-scheme1.jpg

Experimental

Crystal data

  • [Co(C8H9N2O4)2(H2O)2]·2C3H7NO
  • M r = 635.50
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1443-efi3.jpg
  • a = 7.3325 (7) Å
  • b = 9.330 (1) Å
  • c = 11.2255 (12) Å
  • α = 76.930 (1)°
  • β = 87.564 (2)°
  • γ = 68.857 (1)°
  • V = 697.06 (12) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.69 mm−1
  • T = 298 K
  • 0.28 × 0.16 × 0.12 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.831, T max = 0.922
  • 3602 measured reflections
  • 2393 independent reflections
  • 1785 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.120
  • S = 1.06
  • 2393 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042054/jh2216sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042054/jh2216Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), the Guangdong Province key project in the field of social development [grant No. A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002)

supplementary crystallographic information

Comment

Design of a metal-organic framework via deliberate selection of metals and multifunctional ligands is one of the most attractive topics because of the fascinating structural diversity and potential applications in catalysis, chirality, conductivity, luminescence, magnetism, sensors, nonlinear optics, and porosity. 2-propyl-1H-imidazole-4,5-carboxylate(H3pimda) ligand as one derivative of H3IDC with efficient N,O-donors has been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k3 N3, O4,O5)calcium(II)](Song et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4) manganese(II)]N,N-dimethylformamide(Yan et al., 2010), [Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4)nickle(II)]N,N-dimethylformamide disolvate(Li et al., 2010a), Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- k2N3,O4)copper(II) N,N-dimethylformamide disolvate(He et al., 2010), Diaquabis(5-carboxy-2-propyl-1H-imidazole- 4-carboxylato-k2N3,O4)nickle(II) tetrahedrate(Fan et al., 2010), Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- k2N3,O4)-manganese(II) 3.5-hydrate(Li et al. 2010c), Diaquabis (5-carboxy-2-propyl-1H-imidazole-4-carboxylato-K2N3,O4)zinc(II) 3.5-hydrate(Li et al. 2010b), Diaquabis(5-carboxy-2-propyl-1H- imidazole-4-carboxylato-k2N3,O4)cadmium(II) 3.5-hydrate (Li et al. 2010d), In this paper, we will report the synthesis and structure of a new CoII complex based the same ligand.

As illustrated in figure 1, the title complex molecule is isomorphous with Ni(II), Mn(II) and Cu(II) analogs (Li et al., 2010a,b,c,d; Yan et al., 2010; He et al., 2010), Similar structural description applies to the present isomorphous complex.the CoII cation lying on the inversion center, is six-coordinated CoN2O4 in a slightly distorted octahedral geometry, constructed by the two pairs of N and O atoms from H2pimda in the equatorial plane, and two coordinate water O atoms occipying the axial position. The Co—O bond lengths and Co—N bond lengths, all of which are within the range of those observed for other Co complexes based on the similar ligand (Lu et al., 2008; Wang et al., 2004). Each H3pimda adopts bidentate coordination mode to chelate CoII atom through imidazole N atom and O atom from the protonated carboxyl group, the complex molecules and dimethylformamide solvent molecules are linked by extensive O—H···O and N—H···O hydrogen bonds into a two-dimensional supramolecular network parallel to (001).

Experimental

A mixture of Co(NO3)2 (0.5 mmol, 0.06 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid(0.5 mmol, 0.99 g) in 15 ml of DMF solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 413k for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Carboxyl H atoms were located in a difference map and refined with distance restraints, Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N).

Figures

Fig. 1.
The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. (Symmetry codes: (i)1 - x,1 - y,1 - z;)
Fig. 2.
A view of the infinite two-dimensional structure. (H atoms are omitted for clarity)

Crystal data

[Co(C8H9N2O4)2(H2O)2]·2C3H7NOZ = 1
Mr = 635.50F(000) = 333
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3325 (7) ÅCell parameters from 1702 reflections
b = 9.330 (1) Åθ = 2.5–25.9°
c = 11.2255 (12) ŵ = 0.69 mm1
α = 76.930 (1)°T = 298 K
β = 87.564 (2)°Cubic, purple
γ = 68.857 (1)°0.28 × 0.16 × 0.12 mm
V = 697.06 (12) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer2393 independent reflections
Radiation source: fine-focus sealed tube1785 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −8→8
Tmin = 0.831, Tmax = 0.922k = −11→10
3602 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0702P] where P = (Fo2 + 2Fc2)/3
2393 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.50000.50000.0276 (2)
N10.6372 (4)0.2538 (3)0.5508 (2)0.0262 (6)
N20.8031 (4)−0.0015 (3)0.6076 (2)0.0299 (7)
H20.8735−0.09110.65240.036*
N30.1217 (5)0.4898 (4)0.8633 (3)0.0431 (8)
O10.4446 (3)0.4305 (3)0.3378 (2)0.0342 (6)
O20.4995 (4)0.2241 (3)0.2558 (2)0.0410 (6)
H2A0.56180.12890.27350.061*
O30.6877 (4)−0.0632 (3)0.3176 (2)0.0422 (6)
O40.8630 (4)−0.2427 (3)0.4793 (2)0.0415 (6)
O50.2300 (3)0.4898 (3)0.5643 (2)0.0393 (6)
H5C0.20940.41170.55260.047*
H5D0.13090.56980.54030.047*
O60.0385 (4)0.7471 (3)0.7696 (3)0.0600 (8)
C10.5195 (5)0.2858 (4)0.3436 (3)0.0300 (8)
C20.6307 (5)0.1832 (4)0.4565 (3)0.0257 (7)
C30.7326 (5)0.0238 (4)0.4905 (3)0.0274 (7)
C40.7665 (5)−0.1054 (4)0.4262 (3)0.0325 (8)
C50.7426 (5)0.1391 (4)0.6406 (3)0.0288 (8)
C60.7851 (6)0.1544 (4)0.7649 (3)0.0380 (9)
H6A0.74340.26550.76520.046*
H6B0.92540.10810.78220.046*
C70.6851 (7)0.0760 (5)0.8653 (3)0.0535 (11)
H7A0.7339−0.03640.86880.064*
H7B0.54580.11680.84490.064*
C80.7158 (7)0.1009 (6)0.9906 (3)0.0587 (12)
H8A0.84920.04181.01920.088*
H8B0.63010.06561.04670.088*
H8C0.68760.21100.98530.088*
C90.0104 (6)0.6217 (5)0.7892 (4)0.0482 (10)
H9−0.09670.61960.74900.058*
C100.2965 (6)0.4851 (5)0.9218 (4)0.0659 (13)
H10A0.40920.43330.87960.099*
H10B0.30770.42811.00550.099*
H10C0.28870.59070.91900.099*
C110.0896 (9)0.3443 (6)0.8724 (5)0.0855 (17)
H11A−0.03060.36530.82900.128*
H11B0.08170.29730.95700.128*
H11C0.19620.27330.83750.128*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0338 (4)0.0169 (4)0.0301 (4)−0.0063 (3)−0.0011 (3)−0.0059 (3)
N10.0333 (16)0.0169 (15)0.0287 (15)−0.0088 (12)−0.0018 (12)−0.0059 (12)
N20.0349 (17)0.0144 (14)0.0346 (16)−0.0038 (12)−0.0030 (13)−0.0019 (12)
N30.049 (2)0.0271 (18)0.0475 (19)−0.0089 (16)−0.0012 (16)−0.0055 (15)
O10.0437 (15)0.0207 (13)0.0315 (13)−0.0046 (11)−0.0077 (11)−0.0025 (10)
O20.0544 (18)0.0285 (14)0.0357 (14)−0.0071 (13)−0.0098 (12)−0.0098 (12)
O30.0545 (17)0.0317 (15)0.0424 (16)−0.0108 (13)0.0002 (13)−0.0197 (12)
O40.0462 (16)0.0189 (14)0.0572 (17)−0.0063 (12)−0.0018 (13)−0.0125 (12)
O50.0390 (15)0.0270 (14)0.0549 (16)−0.0118 (12)0.0054 (12)−0.0158 (12)
O60.066 (2)0.0279 (16)0.070 (2)−0.0047 (14)−0.0209 (16)0.0049 (14)
C10.033 (2)0.027 (2)0.0322 (19)−0.0115 (16)0.0004 (15)−0.0091 (16)
C20.0293 (18)0.0177 (16)0.0285 (17)−0.0072 (14)0.0001 (14)−0.0043 (14)
C30.0319 (19)0.0228 (18)0.0295 (18)−0.0119 (15)0.0023 (15)−0.0067 (14)
C40.030 (2)0.025 (2)0.045 (2)−0.0092 (16)0.0079 (17)−0.0144 (17)
C50.034 (2)0.0179 (18)0.0322 (19)−0.0084 (15)−0.0024 (15)−0.0016 (15)
C60.046 (2)0.030 (2)0.036 (2)−0.0113 (17)−0.0087 (17)−0.0054 (16)
C70.068 (3)0.061 (3)0.040 (2)−0.029 (2)0.009 (2)−0.019 (2)
C80.065 (3)0.068 (3)0.039 (2)−0.019 (3)0.006 (2)−0.014 (2)
C90.043 (2)0.050 (3)0.048 (2)−0.011 (2)−0.0044 (19)−0.012 (2)
C100.049 (3)0.055 (3)0.071 (3)−0.004 (2)−0.017 (2)0.009 (2)
C110.126 (5)0.045 (3)0.094 (4)−0.043 (3)0.017 (4)−0.016 (3)

Geometric parameters (Å, °)

Co1—N1i2.098 (3)O6—C91.230 (5)
Co1—N12.098 (3)C1—C21.471 (5)
Co1—O5i2.105 (2)C2—C31.372 (4)
Co1—O52.105 (2)C3—C41.482 (4)
Co1—O1i2.165 (2)C5—C61.491 (4)
Co1—O12.165 (2)C6—C71.513 (5)
N1—C51.319 (4)C6—H6A0.9700
N1—C21.377 (4)C6—H6B0.9700
N2—C51.357 (4)C7—C81.515 (5)
N2—C31.371 (4)C7—H7A0.9700
N2—H20.8600C7—H7B0.9700
N3—C91.320 (5)C8—H8A0.9600
N3—C111.440 (5)C8—H8B0.9600
N3—C101.447 (5)C8—H8C0.9600
O1—C11.248 (4)C9—H90.9300
O2—C11.286 (4)C10—H10A0.9600
O2—H2A0.8200C10—H10B0.9600
O3—C41.286 (4)C10—H10C0.9600
O4—C41.238 (4)C11—H11A0.9600
O5—H5C0.8333C11—H11B0.9600
O5—H5D0.8318C11—H11C0.9600
N1i—Co1—N1180.0O4—C4—C3119.3 (3)
N1i—Co1—O5i92.07 (10)O3—C4—C3115.5 (3)
N1—Co1—O5i87.93 (10)N1—C5—N2110.7 (3)
N1i—Co1—O587.93 (10)N1—C5—C6126.4 (3)
N1—Co1—O592.07 (10)N2—C5—C6122.8 (3)
O5i—Co1—O5180.0C5—C6—C7113.5 (3)
N1i—Co1—O1i78.33 (9)C5—C6—H6A108.9
N1—Co1—O1i101.67 (9)C7—C6—H6A108.9
O5i—Co1—O1i88.69 (9)C5—C6—H6B108.9
O5—Co1—O1i91.31 (9)C7—C6—H6B108.9
N1i—Co1—O1101.67 (9)H6A—C6—H6B107.7
N1—Co1—O178.33 (9)C6—C7—C8113.8 (3)
O5i—Co1—O191.31 (9)C6—C7—H7A108.8
O5—Co1—O188.69 (9)C8—C7—H7A108.8
O1i—Co1—O1180.0C6—C7—H7B108.8
C5—N1—C2105.8 (3)C8—C7—H7B108.8
C5—N1—Co1142.0 (2)H7A—C7—H7B107.7
C2—N1—Co1111.9 (2)C7—C8—H8A109.5
C5—N2—C3108.3 (3)C7—C8—H8B109.5
C5—N2—H2125.8H8A—C8—H8B109.5
C3—N2—H2125.8C7—C8—H8C109.5
C9—N3—C11121.0 (4)H8A—C8—H8C109.5
C9—N3—C10119.5 (3)H8B—C8—H8C109.5
C11—N3—C10118.7 (4)O6—C9—N3124.5 (4)
C1—O1—Co1114.2 (2)O6—C9—H9117.7
C1—O2—H2A109.5N3—C9—H9117.7
Co1—O5—H5C113.1N3—C10—H10A109.5
Co1—O5—H5D116.9N3—C10—H10B109.5
H5C—O5—H5D108.6H10A—C10—H10B109.5
O1—C1—O2122.4 (3)N3—C10—H10C109.5
O1—C1—C2118.2 (3)H10A—C10—H10C109.5
O2—C1—C2119.5 (3)H10B—C10—H10C109.5
C3—C2—N1110.3 (3)N3—C11—H11A109.5
C3—C2—C1132.5 (3)N3—C11—H11B109.5
N1—C2—C1117.2 (3)H11A—C11—H11B109.5
N2—C3—C2104.9 (3)N3—C11—H11C109.5
N2—C3—C4122.9 (3)H11A—C11—H11C109.5
C2—C3—C4132.2 (3)H11B—C11—H11C109.5
O4—C4—O3125.2 (3)
N1i—Co1—N1—C5156 (25)O1—C1—C2—N12.7 (5)
O5i—Co1—N1—C585.2 (4)O2—C1—C2—N1−175.9 (3)
O5—Co1—N1—C5−94.8 (4)C5—N2—C3—C20.4 (3)
O1i—Co1—N1—C5−3.0 (4)C5—N2—C3—C4−178.4 (3)
O1—Co1—N1—C5177.0 (4)N1—C2—C3—N2−0.5 (3)
N1i—Co1—N1—C2−17 (25)C1—C2—C3—N2−179.6 (3)
O5i—Co1—N1—C2−88.1 (2)N1—C2—C3—C4178.1 (3)
O5—Co1—N1—C291.9 (2)C1—C2—C3—C4−1.0 (6)
O1i—Co1—N1—C2−176.3 (2)N2—C3—C4—O4−0.3 (5)
O1—Co1—N1—C23.7 (2)C2—C3—C4—O4−178.6 (3)
N1i—Co1—O1—C1177.5 (2)N2—C3—C4—O3178.7 (3)
N1—Co1—O1—C1−2.5 (2)C2—C3—C4—O30.4 (5)
O5i—Co1—O1—C185.2 (2)C2—N1—C5—N2−0.1 (4)
O5—Co1—O1—C1−94.8 (2)Co1—N1—C5—N2−173.7 (2)
O1i—Co1—O1—C126 (45)C2—N1—C5—C6−177.2 (3)
Co1—O1—C1—O2179.3 (2)Co1—N1—C5—C69.3 (6)
Co1—O1—C1—C20.7 (4)C3—N2—C5—N1−0.2 (4)
C5—N1—C2—C30.4 (4)C3—N2—C5—C6177.1 (3)
Co1—N1—C2—C3176.1 (2)N1—C5—C6—C7110.9 (4)
C5—N1—C2—C1179.6 (3)N2—C5—C6—C7−65.8 (5)
Co1—N1—C2—C1−4.7 (3)C5—C6—C7—C8−175.9 (3)
O1—C1—C2—C3−178.2 (3)C11—N3—C9—O6−174.1 (4)
O2—C1—C2—C33.2 (6)C10—N3—C9—O6−3.8 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5D···O4ii0.832.122.946 (3)174
O5—H5C···O4iii0.831.942.773 (3)175
O2—H2A···O30.821.662.478 (3)177
N2—H2···O6iv0.861.842.685 (4)166

Symmetry codes: (ii) x−1, y+1, z; (iii) −x+1, −y, −z+1; (iv) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2216).

References

  • Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898. [PMC free article] [PubMed]
  • He, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896. [PMC free article] [PubMed]
  • Li, S.-J., Dong, J.-J., Song, W.-D., Yan, J.-B. & Li, S.-H. (2010d). Acta Cryst. E66, m1175–m1176. [PMC free article] [PubMed]
  • Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010c). Acta Cryst. E66, m1096–m1097. [PMC free article] [PubMed]
  • Li, S.-J., Song, W.-D., Li, S.-H., Dong, J.-J. & Yan, J.-B. (2010b). Acta Cryst. E66, m1094–m1095. [PMC free article] [PubMed]
  • Li, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010a). Acta Cryst. E66, m280. [PMC free article] [PubMed]
  • Lu, W. G., Gu, J. Z., Jiang, L., Tan, Y. M. & Lu, T. B. (2008). Cryst. Growth Des.8, 192–199.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53. [PMC free article] [PubMed]
  • Wang, Y.-L., Cao, R. & Bi, W.-H. (2004). Acta Cryst. C60, m609–m611. [PubMed]
  • Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography