PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2965.
Published online 2010 October 30. doi:  10.1107/S1600536810042649
PMCID: PMC3009027

2-(1,2,3,4-Tetra­hydro-9H-carbazol-1-yl­idene)propane­dinitrile

Abstract

In the title compound, C15H11N3, the cyclo­hexene ring adopts a sofa conformation. An intra­molecular N—H(...)N hydrogen bond generates an S(7) ring motif. In the crystal, mol­ecules are linked by inter­molecular N—H(...)N, C—H(...)N and C—H(...)π inter­actions into a three-dimensional network.

Related literature

For the biological activity of carbazole derivatives, see: Shufen et al. (1995 [triangle]); Magnus et al. (1992 [triangle]); Abraham (1975 [triangle]); Saxton (1983 [triangle]); Phillipson & Zenk (1980 [triangle]); Bergman & Pelcman (1990 [triangle]); Kirtikar & Basu (1933 [triangle]); Chakraborty et al. (1973 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For asymmetry parameters, see: Nardelli (1983 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2965-scheme1.jpg

Experimental

Crystal data

  • C15H11N3
  • M r = 233.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2965-efi1.jpg
  • a = 7.7631 (10) Å
  • b = 8.0003 (10) Å
  • c = 9.8933 (13) Å
  • α = 87.461 (8)°
  • β = 82.392 (8)°
  • γ = 75.038 (7)°
  • V = 588.35 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.984, T max = 0.986
  • 10589 measured reflections
  • 2924 independent reflections
  • 2339 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.130
  • S = 1.06
  • 2924 reflections
  • 168 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810042649/bt5359sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042649/bt5359Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank TBI consultancy, University of Madras, India, for the data collection.

supplementary crystallographic information

Comment

Carbazole alkaloids obtained from naturally occurring sources have been the subject of extensive research, mainly because of their widespread application in traditional medicine (Bergman & Pelcman, 1990; Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals, light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). These types of compounds possess significant antibiotic, anti-carcinogenic, antiviral and anti-inflammatory properties (Chakraborty et al., 1973). Against this background and to ascertain the molecular structure and conformation, the X-ray structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The cyclohexane ring in the carbazole ring system adopts sofa conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2 =0.378 (1) Å, q3 = -0.274 (1) Å, [var phi]2 = 353.6 (2)° and Δs(C2 & C5)= 6.11 (13)°. The sum of the bond angles around N1 [359.6°] is in accordance with sp2 hybridization. The bond angles of (C14—C15—N16) 178.3 (1)° and (C14—C17—N18) 178.9 (2)° show linear character of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing reveals that symmetry-related molecules are linked through a network by C—H···N, N—H···N, C—H···π and π···π types of intra and intermolecular interactions. The intramolecular N1—H1···N16 hydrogen bond generates a S(7) ring motif. The molecules at (x, y, z) and (-x, -y + 1, -z) are linked by C12—H12···N16 hydrogen bonds into cyclic centrosymmetric R22(18) dimer. The dimers are cross-linked via C—H···π intermolecular interactions.

Experimental

A mixture of 1-oxo-1,2,3,4-tetrahydrocarbazole (7.5 mmol), and melanonitrile (7.5 mmol), ammonium acetate (0.57 g, 8.125 mmol) and acetic acid (1.5 ml, 24.75 mmol) in 12.5 ml of toluene was stirred at 105°C for five 5 h. On cooling the precipitate that formed was filtered off, washed with hexane (20 ml) and dried at 100°C to give a crude product of 1-(dicyanomethylene) -2,3,4-tetrahydrocarbazole. The crystals of the title compound suitable for single XRD analysis were obtained by the slow evaporation method by using dichloroethane as solvent at room temperature.

Refinement

N-bound H atom was located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. The components of the anisotropic displacement parameters of (C14-C15) and (C14-C17) in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C15H11N3Z = 2
Mr = 233.27F(000) = 244
Triclinic, P1Dx = 1.317 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7631 (10) ÅCell parameters from 1654 reflections
b = 8.0003 (10) Åθ = 2.1–28.4°
c = 9.8933 (13) ŵ = 0.08 mm1
α = 87.461 (8)°T = 293 K
β = 82.392 (8)°Block, colorless
γ = 75.038 (7)°0.20 × 0.18 × 0.17 mm
V = 588.35 (13) Å3

Data collection

Bruker SMART APEXII area-detector diffractometer2924 independent reflections
Radiation source: fine-focus sealed tube2339 reflections with I > 2σ(I)
graphiteRint = 0.039
ω and [var phi] scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −10→10
Tmin = 0.984, Tmax = 0.986k = −10→10
10589 measured reflectionsl = −12→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130w = 1/[σ2(Fo2) + (0.0748P)2 + 0.0374P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
2924 reflectionsΔρmax = 0.23 e Å3
168 parametersΔρmin = −0.15 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.18203 (13)0.14402 (13)0.01388 (9)0.0404 (2)
H10.118 (2)0.252 (2)0.0038 (17)0.068 (4)*
C20.25866 (13)0.06198 (14)0.12645 (10)0.0375 (2)
C30.26818 (13)0.13570 (14)0.25321 (10)0.0380 (3)
C40.36565 (17)0.01146 (17)0.35406 (13)0.0491 (3)
H4A0.31790.05270.44560.059*
H4B0.49180.01120.33980.059*
C50.35020 (18)−0.17242 (16)0.34360 (13)0.0532 (3)
H5A0.2257−0.17560.36700.064*
H5B0.4204−0.24610.40780.064*
C60.41700 (17)−0.23982 (16)0.20031 (13)0.0518 (3)
H6A0.5464−0.25820.18300.062*
H6B0.3889−0.34980.19100.062*
C70.32980 (14)−0.11254 (14)0.09931 (11)0.0412 (3)
C80.29475 (14)−0.13856 (15)−0.03433 (12)0.0430 (3)
C90.32862 (18)−0.28496 (18)−0.11570 (14)0.0559 (3)
H90.3900−0.3926−0.08490.067*
C100.26989 (19)−0.2670 (2)−0.24143 (15)0.0621 (4)
H100.2916−0.3636−0.29630.075*
C110.17753 (18)−0.1052 (2)−0.28854 (13)0.0561 (3)
H110.1390−0.0972−0.37430.067*
C120.14204 (16)0.04168 (17)−0.21264 (11)0.0486 (3)
H120.08150.1487−0.24510.058*
C130.20122 (14)0.02303 (15)−0.08386 (11)0.0407 (3)
C140.20193 (15)0.30577 (15)0.28668 (11)0.0436 (3)
C150.11508 (19)0.43809 (15)0.19901 (13)0.0519 (3)
N160.0464 (2)0.54705 (16)0.13082 (13)0.0753 (4)
C170.22133 (19)0.36577 (18)0.41741 (14)0.0575 (3)
N180.2367 (2)0.4156 (2)0.51944 (15)0.0918 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0490 (5)0.0377 (5)0.0343 (5)−0.0091 (4)−0.0075 (4)−0.0041 (4)
C20.0391 (5)0.0380 (5)0.0360 (5)−0.0103 (4)−0.0051 (4)−0.0024 (4)
C30.0375 (5)0.0424 (6)0.0356 (5)−0.0120 (4)−0.0056 (4)−0.0026 (4)
C40.0505 (6)0.0526 (7)0.0441 (6)−0.0081 (5)−0.0158 (5)0.0000 (5)
C50.0597 (7)0.0476 (7)0.0496 (7)−0.0054 (5)−0.0160 (5)0.0062 (5)
C60.0517 (6)0.0408 (6)0.0591 (7)−0.0023 (5)−0.0114 (5)−0.0020 (5)
C70.0392 (5)0.0395 (6)0.0435 (6)−0.0073 (4)−0.0035 (4)−0.0055 (4)
C80.0418 (5)0.0427 (6)0.0433 (6)−0.0102 (4)0.0009 (4)−0.0103 (5)
C90.0591 (7)0.0477 (7)0.0585 (8)−0.0100 (5)0.0009 (6)−0.0191 (6)
C100.0647 (8)0.0658 (9)0.0577 (8)−0.0225 (7)0.0074 (6)−0.0300 (7)
C110.0576 (7)0.0769 (9)0.0397 (6)−0.0278 (7)0.0000 (5)−0.0173 (6)
C120.0521 (6)0.0592 (7)0.0371 (6)−0.0183 (5)−0.0043 (5)−0.0075 (5)
C130.0418 (5)0.0458 (6)0.0357 (5)−0.0140 (4)−0.0010 (4)−0.0075 (4)
C140.0511 (6)0.0433 (6)0.0391 (5)−0.0133 (5)−0.0107 (4)−0.0061 (4)
C150.0725 (8)0.0386 (6)0.0466 (6)−0.0132 (5)−0.0150 (5)−0.0068 (5)
N160.1197 (11)0.0434 (6)0.0624 (8)−0.0100 (7)−0.0318 (7)0.0008 (6)
C170.0693 (8)0.0528 (7)0.0502 (7)−0.0071 (6)−0.0194 (6)−0.0137 (6)
N180.1192 (12)0.0874 (10)0.0674 (9)−0.0048 (9)−0.0392 (8)−0.0328 (8)

Geometric parameters (Å, °)

N1—C131.3655 (14)C7—C81.4193 (16)
N1—C21.3906 (14)C8—C91.3991 (16)
N1—H10.885 (17)C8—C131.4114 (17)
C2—C71.3865 (15)C9—C101.370 (2)
C2—C31.4278 (15)C9—H90.9300
C3—C141.3634 (16)C10—C111.401 (2)
C3—C41.5098 (16)C10—H100.9300
C4—C51.5156 (19)C11—C121.3698 (18)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700C12—C131.3997 (16)
C5—C61.5159 (18)C12—H120.9300
C5—H5A0.9700C14—C151.4257 (17)
C5—H5B0.9700C14—C171.4386 (16)
C6—C71.4921 (16)C15—N161.1413 (17)
C6—H6A0.9700C17—N181.1334 (17)
C6—H6B0.9700
C13—N1—C2108.44 (9)C2—C7—C8106.56 (10)
C13—N1—H1121.1 (11)C2—C7—C6123.35 (10)
C2—N1—H1130.1 (11)C8—C7—C6130.04 (10)
C7—C2—N1109.30 (9)C9—C8—C13119.21 (12)
C7—C2—C3122.29 (10)C9—C8—C7133.37 (12)
N1—C2—C3128.42 (10)C13—C8—C7107.37 (10)
C14—C3—C2125.47 (10)C10—C9—C8118.88 (13)
C14—C3—C4119.15 (10)C10—C9—H9120.6
C2—C3—C4115.36 (10)C8—C9—H9120.6
C3—C4—C5113.84 (10)C9—C10—C11120.89 (12)
C3—C4—H4A108.8C9—C10—H10119.6
C5—C4—H4A108.8C11—C10—H10119.6
C3—C4—H4B108.8C12—C11—C10122.23 (12)
C5—C4—H4B108.8C12—C11—H11118.9
H4A—C4—H4B107.7C10—C11—H11118.9
C4—C5—C6110.58 (11)C11—C12—C13116.83 (13)
C4—C5—H5A109.5C11—C12—H12121.6
C6—C5—H5A109.5C13—C12—H12121.6
C4—C5—H5B109.5N1—C13—C12129.73 (11)
C6—C5—H5B109.5N1—C13—C8108.31 (10)
H5A—C5—H5B108.1C12—C13—C8121.95 (11)
C7—C6—C5109.78 (10)C3—C14—C15125.01 (10)
C7—C6—H6A109.7C3—C14—C17120.54 (11)
C5—C6—H6A109.7C15—C14—C17114.43 (11)
C7—C6—H6B109.7N16—C15—C14178.28 (13)
C5—C6—H6B109.7N18—C17—C14178.87 (17)
H6A—C6—H6B108.2
C13—N1—C2—C70.92 (12)C7—C8—C9—C10177.34 (12)
C13—N1—C2—C3−179.03 (10)C8—C9—C10—C110.1 (2)
C7—C2—C3—C14179.75 (10)C9—C10—C11—C120.2 (2)
N1—C2—C3—C14−0.31 (19)C10—C11—C12—C13−0.53 (18)
C7—C2—C3—C41.66 (15)C2—N1—C13—C12178.09 (11)
N1—C2—C3—C4−178.40 (10)C2—N1—C13—C8−1.16 (12)
C14—C3—C4—C5150.75 (11)C11—C12—C13—N1−178.53 (11)
C2—C3—C4—C5−31.03 (14)C11—C12—C13—C80.64 (17)
C3—C4—C5—C656.40 (14)C9—C8—C13—N1178.93 (10)
C4—C5—C6—C7−50.35 (13)C7—C8—C13—N10.97 (12)
N1—C2—C7—C8−0.30 (12)C9—C8—C13—C12−0.40 (17)
C3—C2—C7—C8179.65 (9)C7—C8—C13—C12−178.35 (10)
N1—C2—C7—C6−177.95 (10)C2—C3—C14—C15−1.19 (19)
C3—C2—C7—C62.00 (17)C4—C3—C14—C15176.84 (11)
C5—C6—C7—C223.15 (15)C2—C3—C14—C17−179.26 (11)
C5—C6—C7—C8−153.90 (12)C4—C3—C14—C17−1.23 (17)
C2—C7—C8—C9−177.95 (12)C3—C14—C15—N16−161 (5)
C6—C7—C8—C9−0.5 (2)C17—C14—C15—N1617 (5)
C2—C7—C8—C13−0.40 (12)C3—C14—C17—N18149 (9)
C6—C7—C8—C13177.03 (11)C15—C14—C17—N18−30 (9)
C13—C8—C9—C100.02 (18)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N160.885 (17)2.623 (17)3.3314 (16)137.8 (13)
N1—H1···N16i0.885 (17)2.279 (17)3.0656 (17)148.1 (14)
C12—H12···N16i0.932.623.3254 (19)133
C4—H4B···Cg3ii0.972.863.6950 (15)145

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5359).

References

  • Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, ch. 7 and 8. New York: Marcel Decker.
  • Bergman, J. & Pelcman, B. (1990). Pure Appl. Chem.62, 1967–1976.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chakraborty, D. P., Das, K. C., Das, B. P. & Chowdhury, B. K. (1973). Trans. Bose Res. Inst 38, 1–10.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kirtikar, K. R. & Basu, B. D. (1933). Indian Med. Plants, 2nd ed., p. 274. Allahabad: L. M. Basu.
  • Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem.57, 70–78.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.
  • Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shufen, Z., Danhong, Z. & Jinzong, Y. (1995). Dyes Pigm.27, 287–296.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography