PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2704.
Published online 2010 October 2. doi:  10.1107/S1600536810038031
PMCID: PMC3009025

12β,14-Dihy­droxy-3-oxo-5β,20(22)-cardenolide monohydrate

Abstract

The title compound, digoxigenone, C23H30O5·H2O, was biotransformed from digoxigenin. In the crystal, inter­molecular O—H(...)O hydrogen bonds contribute to the formation of a three-dimensional supra­molecular structure. The title compound has three fused six-membered rings (A,B,C) and two non-fused five-membered rings (D,E). As in other structures, compound nucleus has a cis-trans-cis conformation for the A-B,B-C,C-D ring junctions with rings A, B and C exhibiting chair conformations.

Related literature

Digitoxin and digoxin, the typical clinically used forms (Kreis et al., 1998 [triangle]), are the drugs of choice for the treatment of congestive heart failure, acting as selective inhibitors of the Na+, K+ ATPase enzyme. For the biotransformation of digitoxigenin into digoxigenin and digoxigenone by Fusarium ciliatum and into 1 β-hy­droxy­digitoxigenin, 7-β-hy­droxy­digi­toxi­genin, 8-β-hydroxidigitoxigenin and digitoxigenone by Cochliobolus lunatus, see: Pádua et al. (2005 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2704-scheme1.jpg

Experimental

Crystal data

  • C23H30O5·H2O
  • M r = 404.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2704-efi1.jpg
  • a = 7.4017 (15) Å
  • b = 7.7450 (15) Å
  • c = 10.215 (2) Å
  • α = 99.51 (3)°
  • β = 94.70 (3)°
  • γ = 114.97 (3)°
  • V = 516.0 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.32 × 0.26 × 0.20 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.971, T max = 0.982
  • 5251 measured reflections
  • 1809 independent reflections
  • 1443 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.082
  • S = 1.00
  • 1809 reflections
  • 275 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038031/hg2696sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038031/hg2696Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Tianjin (No. 08JCZDJC15200)

supplementary crystallographic information

Comment

Digitoxin and digoxin, the typical clinically used forms (Kreis et al., 1998), are the drugs of choice for the treatment of congestive heart failure, acting as selective inhibitors of the Na+, K+ ATPase enzyme. Digitoxigenin has been biotransformed into digoxigenin and digoxigenone by Fusarium ciliatum and into 1 beta-hydroxydigitoxigenin, 7 beta-hydroxydigitoxigenin, 8 beta-hydroxidigitoxigenin, and digitoxigenone by Cochliobolus lunatus (Pádua et al., 2005; Pádua et al., 2007). In this paper, we studied the biotransformation of digoxigenin by Arthrobacter simplex and reported crystal structure of the compound digoxigenone.

The crystal structure is shown in Fig. 1. The crystal structure consists of an digoxigenone molecule and one water molecule. Compound digoxigenone has three fused six-membered rings (A/B/C) and two non-fused five-membered rings (D/E). As in other structures the A, B and C rings have a chair conformation. The 12-hydroxy is beta configuration with the torsion angles C9—C11—C12—O2 = -179.6 (2)°. The 14-hydroxy is beta configuration with the torsion angles C7—C8—C14—O3 = -64.4 (3)°. The orientation of the lactone ring is determined by the torsion angle C(13)—C(17)—C(20)—C(22) = -113.1 (3)°.

In the crystal packing (Fig. 2), X-ray analysis indicates that there were three types of intermolecular hydrogen bonds contributed to the formation of three-dimensional supramolecular structure: between solvent water molecule and carbonyl of adjacent digoxigenone molecule, hydroxyl of digoxigenone molecule and hydroxyl of adjacent digoxigenone molecule, and hydroxyl of digoxigenone molecule and solvent water molecule. The hydrogen bonding parameters are O(6)—H(6 A)···O(1)#3, 2.800 (3), 173.7; O(6)—H(6B)···O(5)#4, 2.742 (3), 160.3; O(2)—H(2)···O(6)#1 2.805 (2), 172.7; and O(3)—H(3)···O(2)#2, 2.901 (2), 163.7. (Symmetry code: #1 x - 1,y,z - 1; #2 x + 1,y,z; #3 x + 1,y + 1,z; #4 x,y - 1,z + 1).

Experimental

The Arthrobacter simplex TCCC 11037 (stored in our laboratory) was maintained at 277 K on a slant containing glucose 10.0 g/L, yeast extract 10.0 g L-1 and agar 20.0 g L-1 (pH = 7.2). Seed media consists of glucose 10.0 g/L, corn slurry 10.0 g/L, peptone 5.0 g/L and KH2PO4 2.5 g/L (pH = 7.2).

The Arthrobacter simplex (ASP) cells were prepared in two consecutive cultivation steps (18 h for seed culture and 24 h for cell incubation, respectively) in shake flasks. The whole ASP culture using 5% (v/v) of seed culture was grown in 250 ml shake flasks containing 30 ml culture media on a rotary shaker (160 rpm) at 305 K. Digoxigenin dissolved in ethanol (50 g L-1) and distributed among the flasks (0.34 g/L),and then the reaction was allowed to proceed for 7 days at 307 K. The biotransformation products were sequentially extracted with ethyl acetate (3 × 100 ml) in a separator funnel and the solvent was vacuum removed at 333 K, until a residue was produced. The crude extracts were purified by Si gel column using chloroform/methanol (25:1, v/v). The white power was diffused with petroleum ether/acetone (5:3, v/v) at room temperature. Colourless prism crystals were obtained.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.96Å for methyl, 0.97 Å for methylene and 0.93Å for C(sp2), respectively) and refined as riding with Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for others. The H atoms of hyadroxyl were geometrically placed O–H = 0.82Å and refined as riding with Uiso(H) = 1.5Ueq(O). The water H atoms were located from a difference map and refined freely.

Figures

Fig. 1.
Perspective view of the title compound (noncoordinated water molecule was omitted for clarity)
Fig. 2.
View of the packing of the title compound

Crystal data

C23H30O5·H2OZ = 1
Mr = 404.49F(000) = 218
Triclinic, P1Dx = 1.302 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4017 (15) ÅCell parameters from 1642 reflections
b = 7.7450 (15) Åθ = 2.1–27.8°
c = 10.215 (2) ŵ = 0.09 mm1
α = 99.51 (3)°T = 293 K
β = 94.70 (3)°Prism, colourless
γ = 114.97 (3)°0.32 × 0.26 × 0.20 mm
V = 516.0 (2) Å3

Data collection

Rigaku Saturn CCD area-detector diffractometer1809 independent reflections
Radiation source: rotating anode1443 reflections with I > 2σ(I)
confocalRint = 0.035
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω and [var phi] scansh = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −9→8
Tmin = 0.971, Tmax = 0.982l = −12→12
5251 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082w = 1/[σ2(Fo2) + (0.0504P)2 + 0.010P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1809 reflectionsΔρmax = 0.14 e Å3
275 parametersΔρmin = −0.14 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.43 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0073 (4)0.3043 (5)0.5686 (3)0.0474 (8)
H1A−0.10000.36100.55510.057*
H1B−0.02810.21030.48640.057*
C2−0.0581 (5)0.1979 (5)0.6826 (3)0.0566 (9)
H2A−0.05740.28680.76180.068*
H2B−0.19310.09070.65690.068*
C30.0884 (5)0.1203 (5)0.7161 (3)0.0562 (9)
C40.2931 (5)0.2275 (5)0.6930 (3)0.0548 (8)
H40.38680.18130.71370.066*
C50.3553 (4)0.3895 (4)0.6435 (3)0.0394 (7)
C60.5751 (4)0.5096 (5)0.6423 (3)0.0510 (8)
H6A0.64960.43820.66460.061*
H6B0.62520.62950.71070.061*
C70.6133 (4)0.5598 (5)0.5056 (3)0.0426 (7)
H7A0.58230.44150.43950.051*
H7B0.75520.64760.51180.051*
C80.4846 (4)0.6561 (4)0.4589 (3)0.0302 (6)
H80.52360.77800.52530.036*
C90.2593 (3)0.5255 (4)0.4572 (3)0.0299 (6)
H90.22190.40430.39060.036*
C100.2105 (4)0.4666 (3)0.5934 (2)0.0321 (6)
C110.1312 (4)0.6216 (4)0.4064 (3)0.0380 (7)
H11A−0.01080.53450.40050.046*
H11B0.16220.74110.47120.046*
C120.1679 (4)0.6685 (4)0.2704 (3)0.0333 (6)
H120.12540.54610.20380.040*
C130.3939 (4)0.8041 (3)0.2682 (2)0.0302 (6)
C140.5248 (4)0.7098 (4)0.3221 (3)0.0311 (6)
C150.4892 (4)0.5418 (4)0.2060 (3)0.0364 (6)
H15A0.36580.42740.20680.044*
H15B0.60130.50800.21160.044*
C160.4720 (4)0.6179 (4)0.0779 (3)0.0441 (7)
H16A0.36720.51530.00830.053*
H16B0.59910.66140.04420.053*
C170.4186 (4)0.7903 (4)0.1164 (3)0.0350 (6)
H170.28520.75220.06440.042*
C180.2350 (5)0.6415 (5)0.7033 (3)0.0507 (8)
H18A0.21820.60270.78780.076*
H18B0.13460.68360.67890.076*
H18C0.36740.74690.71160.076*
C190.4521 (4)1.0101 (4)0.3480 (3)0.0418 (7)
H19A0.59411.08960.35290.063*
H19B0.42201.00490.43730.063*
H19C0.37671.06540.30390.063*
C200.5633 (4)0.9736 (4)0.0803 (3)0.0380 (6)
C210.7889 (4)1.0689 (4)0.1180 (4)0.0567 (9)
H21A0.82961.11360.21500.068*
H21B0.84340.97870.08630.068*
C220.5139 (5)1.0757 (4)0.0035 (3)0.0488 (8)
H220.38281.0478−0.03310.059*
C230.6953 (5)1.2364 (4)−0.0143 (3)0.0523 (8)
O10.0400 (5)−0.0230 (4)0.7666 (3)0.0905 (10)
O20.0392 (3)0.7578 (3)0.2377 (2)0.0497 (6)
H20.02510.75340.15660.075*
O30.7324 (2)0.8562 (2)0.33978 (19)0.0392 (5)
H30.80170.80510.30950.059*
O40.8586 (3)1.2327 (3)0.0526 (2)0.0610 (6)
O50.7166 (4)1.3617 (4)−0.0773 (3)0.0797 (8)
O60.9639 (4)0.7538 (4)0.9630 (3)0.0661 (7)
H1W0.979 (7)0.816 (5)0.899 (3)0.105 (15)*
H2W0.901 (7)0.6285 (16)0.937 (4)0.13 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0383 (16)0.0560 (19)0.0500 (19)0.0171 (14)0.0123 (14)0.0255 (16)
C20.0578 (19)0.053 (2)0.061 (2)0.0180 (16)0.0204 (16)0.0302 (16)
C30.076 (2)0.0477 (19)0.049 (2)0.0266 (17)0.0187 (17)0.0210 (16)
C40.070 (2)0.063 (2)0.056 (2)0.0440 (18)0.0204 (16)0.0306 (17)
C50.0454 (16)0.0485 (17)0.0328 (16)0.0267 (14)0.0062 (12)0.0149 (13)
C60.0421 (17)0.075 (2)0.0494 (19)0.0327 (16)0.0062 (14)0.0296 (17)
C70.0332 (16)0.0563 (18)0.0503 (18)0.0265 (14)0.0103 (13)0.0232 (15)
C80.0299 (13)0.0342 (14)0.0291 (14)0.0165 (11)0.0042 (10)0.0076 (11)
C90.0297 (13)0.0332 (14)0.0311 (14)0.0168 (11)0.0066 (10)0.0099 (11)
C100.0342 (15)0.0356 (16)0.0300 (15)0.0179 (12)0.0057 (11)0.0089 (12)
C110.0336 (15)0.0534 (17)0.0390 (16)0.0261 (13)0.0104 (12)0.0205 (14)
C120.0263 (13)0.0449 (16)0.0383 (16)0.0213 (12)0.0098 (11)0.0166 (13)
C130.0309 (13)0.0318 (14)0.0306 (15)0.0156 (11)0.0074 (11)0.0083 (11)
C140.0234 (13)0.0334 (14)0.0380 (15)0.0127 (11)0.0087 (11)0.0096 (12)
C150.0371 (14)0.0359 (15)0.0399 (16)0.0179 (12)0.0138 (12)0.0093 (13)
C160.0528 (17)0.0400 (15)0.0382 (17)0.0183 (13)0.0133 (13)0.0083 (13)
C170.0322 (13)0.0384 (15)0.0311 (14)0.0117 (12)0.0056 (11)0.0096 (12)
C180.075 (2)0.0529 (19)0.0376 (17)0.0377 (18)0.0189 (15)0.0126 (15)
C190.0480 (16)0.0357 (15)0.0439 (16)0.0210 (13)0.0088 (13)0.0076 (13)
C200.0429 (15)0.0383 (15)0.0328 (15)0.0169 (12)0.0113 (12)0.0088 (12)
C210.0425 (18)0.049 (2)0.074 (2)0.0101 (15)0.0141 (15)0.0295 (17)
C220.055 (2)0.0499 (18)0.0475 (18)0.0235 (16)0.0153 (14)0.0210 (15)
C230.071 (2)0.0427 (18)0.0470 (19)0.0238 (16)0.0232 (17)0.0179 (15)
O10.119 (2)0.0708 (17)0.107 (2)0.0453 (16)0.0475 (19)0.0631 (18)
O20.0421 (11)0.0820 (15)0.0485 (12)0.0417 (11)0.0136 (10)0.0331 (12)
O30.0267 (9)0.0401 (11)0.0502 (12)0.0131 (8)0.0086 (8)0.0119 (9)
O40.0545 (14)0.0495 (13)0.0670 (16)0.0068 (10)0.0171 (11)0.0236 (11)
O50.108 (2)0.0596 (15)0.083 (2)0.0347 (15)0.0367 (15)0.0438 (14)
O60.0627 (15)0.0775 (19)0.0564 (15)0.0232 (15)0.0116 (12)0.0316 (14)

Geometric parameters (Å, °)

C1—C21.518 (4)C13—C191.526 (4)
C1—C101.536 (4)C13—C141.555 (3)
C1—H1A0.9700C13—C171.567 (3)
C1—H1B0.9700C14—O31.448 (3)
C2—C31.487 (4)C14—C151.523 (4)
C2—H2A0.9700C15—C161.538 (4)
C2—H2B0.9700C15—H15A0.9700
C3—O11.229 (4)C15—H15B0.9700
C3—C41.450 (5)C16—C171.547 (4)
C4—C51.342 (4)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
C5—C61.497 (4)C17—C201.501 (4)
C5—C101.523 (3)C17—H170.9800
C6—C71.527 (4)C18—H18A0.9600
C6—H6A0.9700C18—H18B0.9600
C6—H6B0.9700C18—H18C0.9600
C7—C81.528 (4)C19—H19A0.9600
C7—H7A0.9700C19—H19B0.9600
C7—H7B0.9700C19—H19C0.9600
C8—C141.539 (3)C20—C221.333 (4)
C8—C91.540 (3)C20—C211.497 (4)
C8—H80.9800C21—O41.451 (3)
C9—C111.537 (3)C21—H21A0.9700
C9—C101.558 (3)C21—H21B0.9700
C9—H90.9800C22—C231.445 (4)
C10—C181.544 (4)C22—H220.9300
C11—C121.510 (4)C23—O51.215 (4)
C11—H11A0.9700C23—O41.352 (4)
C11—H11B0.9700O2—H20.8200
C12—O21.442 (3)O3—H30.8200
C12—C131.560 (3)O6—H1W0.861 (11)
C12—H120.9800O6—H2W0.862 (11)
C2—C1—C10113.8 (2)C13—C12—H12108.7
C2—C1—H1A108.8C19—C13—C14113.6 (2)
C10—C1—H1A108.8C19—C13—C12110.0 (2)
C2—C1—H1B108.8C14—C13—C12108.13 (19)
C10—C1—H1B108.8C19—C13—C17114.5 (2)
H1A—C1—H1B107.7C14—C13—C17103.33 (19)
C3—C2—C1111.8 (3)C12—C13—C17106.8 (2)
C3—C2—H2A109.3O3—C14—C15108.79 (19)
C1—C2—H2A109.3O3—C14—C8107.92 (19)
C3—C2—H2B109.3C15—C14—C8116.0 (2)
C1—C2—H2B109.3O3—C14—C13105.59 (19)
H2A—C2—H2B107.9C15—C14—C13104.0 (2)
O1—C3—C4121.6 (3)C8—C14—C13113.95 (19)
O1—C3—C2121.4 (3)C14—C15—C16105.1 (2)
C4—C3—C2116.9 (3)C14—C15—H15A110.7
C5—C4—C3123.9 (3)C16—C15—H15A110.7
C5—C4—H4118.1C14—C15—H15B110.7
C3—C4—H4118.1C16—C15—H15B110.7
C4—C5—C6120.8 (3)H15A—C15—H15B108.8
C4—C5—C10122.4 (3)C15—C16—C17107.2 (2)
C6—C5—C10116.7 (2)C15—C16—H16A110.3
C5—C6—C7112.2 (2)C17—C16—H16A110.3
C5—C6—H6A109.2C15—C16—H16B110.3
C7—C6—H6A109.2C17—C16—H16B110.3
C5—C6—H6B109.2H16A—C16—H16B108.5
C7—C6—H6B109.2C20—C17—C16112.9 (2)
H6A—C6—H6B107.9C20—C17—C13116.6 (2)
C6—C7—C8111.6 (2)C16—C17—C13105.62 (19)
C6—C7—H7A109.3C20—C17—H17107.1
C8—C7—H7A109.3C16—C17—H17107.1
C6—C7—H7B109.3C13—C17—H17107.1
C8—C7—H7B109.3C10—C18—H18A109.5
H7A—C7—H7B108.0C10—C18—H18B109.5
C7—C8—C14111.8 (2)H18A—C18—H18B109.5
C7—C8—C9110.3 (2)C10—C18—H18C109.5
C14—C8—C9112.24 (18)H18A—C18—H18C109.5
C7—C8—H8107.4H18B—C18—H18C109.5
C14—C8—H8107.4C13—C19—H19A109.5
C9—C8—H8107.4C13—C19—H19B109.5
C11—C9—C8109.72 (19)H19A—C19—H19B109.5
C11—C9—C10112.22 (19)C13—C19—H19C109.5
C8—C9—C10114.26 (19)H19A—C19—H19C109.5
C11—C9—H9106.7H19B—C19—H19C109.5
C8—C9—H9106.7C22—C20—C21107.7 (2)
C10—C9—H9106.7C22—C20—C17125.9 (3)
C5—C10—C1109.3 (2)C21—C20—C17126.4 (2)
C5—C10—C18107.8 (2)O4—C21—C20105.0 (2)
C1—C10—C18110.2 (2)O4—C21—H21A110.7
C5—C10—C9109.2 (2)C20—C21—H21A110.7
C1—C10—C9108.2 (2)O4—C21—H21B110.7
C18—C10—C9112.1 (2)C20—C21—H21B110.7
C12—C11—C9112.8 (2)H21A—C21—H21B108.8
C12—C11—H11A109.0C20—C22—C23109.6 (3)
C9—C11—H11A109.0C20—C22—H22125.2
C12—C11—H11B109.0C23—C22—H22125.2
C9—C11—H11B109.0O5—C23—O4120.3 (3)
H11A—C11—H11B107.8O5—C23—C22130.4 (3)
O2—C12—C11106.0 (2)O4—C23—C22109.3 (2)
O2—C12—C13111.4 (2)C12—O2—H2109.5
C11—C12—C13113.1 (2)C14—O3—H3109.5
O2—C12—H12108.7C23—O4—C21108.4 (2)
C11—C12—H12108.7H1W—O6—H2W114.3 (19)
C10—C1—C2—C3−54.0 (4)C7—C8—C14—O3−64.4 (3)
C1—C2—C3—O1−153.4 (3)C9—C8—C14—O3171.01 (18)
C1—C2—C3—C429.7 (4)C7—C8—C14—C1557.9 (3)
O1—C3—C4—C5−177.1 (3)C9—C8—C14—C15−66.7 (3)
C2—C3—C4—C5−0.2 (5)C7—C8—C14—C13178.7 (2)
C3—C4—C5—C6170.4 (3)C9—C8—C14—C1354.1 (3)
C3—C4—C5—C10−6.1 (5)C19—C13—C14—O3−48.0 (3)
C4—C5—C6—C7131.9 (3)C12—C13—C14—O3−170.35 (19)
C10—C5—C6—C7−51.3 (4)C17—C13—C14—O376.7 (2)
C5—C6—C7—C853.6 (4)C19—C13—C14—C15−162.5 (2)
C6—C7—C8—C14179.2 (2)C12—C13—C14—C1575.2 (2)
C6—C7—C8—C9−55.2 (3)C17—C13—C14—C15−37.8 (2)
C7—C8—C9—C11−178.5 (3)C19—C13—C14—C870.3 (3)
C14—C8—C9—C11−53.1 (3)C12—C13—C14—C8−52.1 (3)
C7—C8—C9—C1054.5 (3)C17—C13—C14—C8−165.0 (2)
C14—C8—C9—C10179.9 (2)O3—C14—C15—C16−75.9 (2)
C4—C5—C10—C1−17.3 (4)C8—C14—C15—C16162.2 (2)
C6—C5—C10—C1166.1 (3)C13—C14—C15—C1636.3 (2)
C4—C5—C10—C18102.6 (3)C14—C15—C16—C17−20.6 (3)
C6—C5—C10—C18−74.1 (3)C15—C16—C17—C20125.5 (2)
C4—C5—C10—C9−135.4 (3)C15—C16—C17—C13−3.0 (3)
C6—C5—C10—C947.9 (3)C19—C13—C17—C2022.6 (3)
C2—C1—C10—C546.7 (3)C14—C13—C17—C20−101.5 (2)
C2—C1—C10—C18−71.5 (3)C12—C13—C17—C20144.6 (2)
C2—C1—C10—C9165.6 (2)C19—C13—C17—C16148.9 (2)
C11—C9—C10—C5−175.0 (2)C14—C13—C17—C1624.8 (2)
C8—C9—C10—C5−49.3 (3)C12—C13—C17—C16−89.1 (2)
C11—C9—C10—C166.1 (3)C16—C17—C20—C22124.3 (3)
C8—C9—C10—C1−168.16 (19)C13—C17—C20—C22−113.1 (3)
C11—C9—C10—C18−55.6 (3)C16—C17—C20—C21−52.4 (4)
C8—C9—C10—C1870.1 (3)C13—C17—C20—C2170.1 (4)
C8—C9—C11—C1255.3 (3)C22—C20—C21—O4−0.7 (3)
C10—C9—C11—C12−176.6 (2)C17—C20—C21—O4176.6 (2)
C9—C11—C12—O2−179.6 (2)C21—C20—C22—C230.4 (3)
C9—C11—C12—C13−57.3 (3)C17—C20—C22—C23−176.9 (2)
O2—C12—C13—C1948.2 (3)C20—C22—C23—O5179.4 (3)
C11—C12—C13—C19−71.1 (3)C20—C22—C23—O40.1 (3)
O2—C12—C13—C14172.8 (2)O5—C23—O4—C21−179.9 (3)
C11—C12—C13—C1453.5 (3)C22—C23—O4—C21−0.5 (3)
O2—C12—C13—C17−76.6 (2)C20—C21—O4—C230.7 (3)
C11—C12—C13—C17164.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.821.992.808 (3)173
O3—H3···O2ii0.822.102.900 (3)164
O6—H1W···O1iii0.86 (1)1.94 (1)2.801 (3)174 (4)
O6—H2W···O5iv0.86 (1)1.91 (2)2.741 (4)162 (5)

Symmetry codes: (i) x−1, y, z−1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2696).

References

  • Kreis, W., Hensel, A. & Stuhlemmer, U. (1998). Planta Med.64, 491–499.
  • Pádua, R. M., Oliveira, A. B., Souza Filho, J. D., Takahashi, J. A., Silva, M. A. & Braga, F. C. (2007). J. Braz. Chem. Soc.18, 1303–1310.
  • Pádua, R. M., Oliveira, A. B., Souza Filho, J. D., Vieira, G. J., Takahashi, J. A. & Braga, F. C. (2005). J. Braz. Chem. Soc.16, 614–619.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography