PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2870.
Published online 2010 October 20. doi:  10.1107/S1600536810041218
PMCID: PMC3009000

4-[(4-Methyl­benz­yl)amino]-3-[(4-methyl­benz­yl)imino­meth­yl]-2H-chromen-2-one

Abstract

The title compound, C26H24N2O2, was prepared from the reaction of 4-chloro-3-formyl­coumarin with p-methyl­benzyl­amine. Even though there are no strong and specific inter­actions in the crystal structure, the translationally related mol­ecules form chains along the b axis. The coumarin moieties are stacked through π–π inter­actions [centroid–centroid distance = 3.5275 (7) Å], forming layers perpendicular to the stacking direction.

Related literature

For the medicinal and biological activity of coumarins and their derivatives, see: Borges et al. (2005 [triangle]); Kontogiorgis & Hadjipavlou-Litina (2005 [triangle]); Gürsoy & Karali (2003 [triangle]); Pratibha & Shreeya (1999 [triangle]); Manolov & Danchev (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2870-scheme1.jpg

Experimental

Crystal data

  • C26H24N2O2
  • M r = 396.47
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2870-efi1.jpg
  • a = 6.8137 (2) Å
  • b = 9.2636 (3) Å
  • c = 17.4364 (5) Å
  • α = 99.525 (2)°
  • β = 97.423 (2)°
  • γ = 107.251 (2)°
  • V = 1017.84 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.32 × 0.26 × 0.21 mm

Data collection

  • Bruker Kappa APEXII CCD DUO diffractometer
  • 17607 measured reflections
  • 4391 independent reflections
  • 3867 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.122
  • S = 1.08
  • 4391 reflections
  • 277 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810041218/bh2311sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041218/bh2311Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

DRB thanks Professor Javed Iqbal, Director of ILS, for his continued support and encouragement. He also thanks Dr Srinivas Basavoju, Department of Chemistry, National Institute of Technology (NIT), Warangal, for his suggestions regarding the crystal structure analysis.

supplementary crystallographic information

Comment

Coumarin is an important structural framework present in a variety of natural and synthetic products that possess significant biological activity (Borges et al., 2005; Gürsoy & Karali, 2003; Kontogiorgis & Hadjipavlou-Litina, 2005). Coumarin derivatives have been shown to possess a remarkably broad spectrum of biological activity, including anti-inflammatory, antibacterial (Pratibha & Shreeya, 1999) anticancer, antiviral, antitumor, anticoagulant, antifungal (Manolov & Danchev, 1995) and anti-HIV activity. During our attempts to synthesize benzazepine derivatives containing various substituents on the benzene ring, the title compound, (I), was obtained unexpectedly by the formation of coumarin derivative instead of the benzazepine derivative (Fig. 1).

The compound (I) was crystallized in the triclinic, P-1 space group with one molecule in the asymmetric unit (Z'=1) (Fig. 2). The crystal structure analysis reveals that the coumarin moieties in the crystal form layers with weak π···π interactions. The molecular structure shows that the 4-methylbenzyl amine and imine moieties form an intramolecular N—H···N interaction [D = N···N = 2.6233 (15) Å, θ = 147.7 (18)°]. The torsion angle of amine attached 4-methylbenzyl group (C24—C25—C20—C19) is 179.09° and imine attached 4-methylbenzyl group (C16—C17—C12—C11) is 172.16°. There are no strong and specific intermolecular interactions found in the crystal structure. The two conformationally flexible moieties (4-methylbenzyl groups attached to amine and imine groups) are however stabilized by C—H···π interactions [C17—H17···π(C20···C25): 2.667 Å, 154.61°]. The translational related molecules interact with each other via weak C—H···O [C6—H6···O2: H6···O2 = 2.615 Å, θ = 134.49°] hydrogen bonds along the b-axis, and form a one dimensional chain (Fig. 3a). The inversion related molecules form weak coumarin π–stacked layers and these layers are stabilized by weak C—H···O [C21—H21···O1: d = H21···O1 = 2.620 Å, θ = 159.37°] hydrogen bonds (Fig.3b).

Experimental

A mixture of 4-chloro-3-formylcoumarin (1.0 mmol) and p-methylbenzylamine (2.0 mmol) were stirred in water (15 ml) at room temperature for 2 h (Fig. 1). After completion of the reaction, the solid product was filtered. The crude product was crystallized from DMF and (I) was obtained as colourless needles by slow evaporation.

Refinement

The crystal structure was solved by direct methods using SHELXS97 and refined by full matrix least-squares refinement on F2 with anisotropic displacement parameters for non-H atoms, using SHELXL97. NH hydrogen atom (H1) was located in a difference map and refined freely. Aromatic and aliphatic CH hydrogen atoms were generated by the riding model in idealized geometries.

Figures

Fig. 1.
Synthetic route for the title compound (I)
Fig. 2.
ORTEP representation of (I), with displacement ellipsoids drawn at the 50% probability level.
Fig. 3.
Crystal packing of (I): (a) showing the one dimensional chain formed via weak C—H···O hydrogen bonds along the b-axis. (intramolecular N—H···N interaction can also be seen). (b) Coumarin ...

Crystal data

C26H24N2O2Z = 2
Mr = 396.47F(000) = 420.0
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8137 (2) ÅCell parameters from 213 reflections
b = 9.2636 (3) Åθ = 2.4–27.0°
c = 17.4364 (5) ŵ = 0.08 mm1
α = 99.525 (2)°T = 296 K
β = 97.423 (2)°Needle, colourless
γ = 107.251 (2)°0.32 × 0.26 × 0.21 mm
V = 1017.84 (6) Å3

Data collection

Bruker Kappa APEXII CCD DUO diffractometer3867 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
graphiteθmax = 27.0°, θmin = 2.4°
[var phi] and ω scansh = −7→8
17607 measured reflectionsk = −11→11
4391 independent reflectionsl = −21→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.063P)2 + 0.4639P] where P = (Fo2 + 2Fc2)/3
4391 reflections(Δ/σ)max = 0.015
277 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.37 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.71493 (13)0.94920 (10)1.10649 (5)0.0147 (2)
O20.68675 (15)0.70231 (11)1.08127 (5)0.0202 (2)
N10.76368 (16)0.96900 (12)0.87229 (6)0.0135 (2)
N20.70561 (15)0.67083 (12)0.84586 (6)0.0140 (2)
C10.70620 (18)0.81679 (14)1.05335 (7)0.0135 (2)
C20.72049 (17)0.82812 (14)0.97287 (7)0.0121 (2)
C30.75128 (17)0.97000 (14)0.94846 (7)0.0114 (2)
C40.76930 (17)1.10806 (14)1.00772 (7)0.0121 (2)
C50.80667 (18)1.25968 (14)0.99476 (8)0.0149 (3)
H50.82161.27740.94450.018*
C60.82167 (19)1.38246 (14)1.05493 (8)0.0165 (3)
H60.84531.48101.04470.020*
C70.80156 (18)1.35920 (15)1.13092 (8)0.0168 (3)
H70.81221.44201.17130.020*
C80.76572 (19)1.21248 (15)1.14600 (7)0.0160 (3)
H80.75181.19611.19650.019*
C90.75060 (17)1.08969 (14)1.08509 (7)0.0132 (2)
C100.69080 (18)0.68181 (14)0.91907 (7)0.0128 (2)
H100.65960.59200.93880.015*
C110.6554 (2)0.51577 (14)0.79593 (8)0.0169 (3)
H11A0.63420.43900.82840.020*
H11B0.77030.51060.76930.020*
C120.45765 (19)0.48263 (14)0.73518 (7)0.0150 (3)
C130.2852 (2)0.35067 (14)0.72762 (7)0.0173 (3)
H130.29580.27580.75600.021*
C140.0973 (2)0.33028 (15)0.67797 (8)0.0190 (3)
H14−0.01550.24110.67320.023*
C150.0748 (2)0.44085 (15)0.63519 (8)0.0190 (3)
C160.2498 (2)0.57018 (15)0.64110 (8)0.0195 (3)
H160.24010.64410.61200.023*
C170.4385 (2)0.59027 (15)0.68983 (8)0.0177 (3)
H170.55360.67660.69220.021*
C18−0.1334 (2)0.42037 (19)0.58467 (9)0.0285 (3)
H18A−0.17540.32580.54530.043*
H18B−0.12020.50600.55910.043*
H18C−0.23680.41630.61750.043*
C190.76994 (19)1.08754 (14)0.82548 (7)0.0147 (2)
H19A0.89921.17360.84430.018*
H19B0.65361.12620.83060.018*
C200.75631 (19)1.01513 (14)0.73987 (7)0.0145 (3)
C210.9152 (2)0.95875 (15)0.71825 (8)0.0168 (3)
H211.02710.96510.75680.020*
C220.9072 (2)0.89349 (15)0.63983 (8)0.0198 (3)
H221.01380.85630.62660.024*
C230.7413 (2)0.88269 (15)0.58023 (8)0.0200 (3)
C240.5838 (2)0.93895 (15)0.60216 (8)0.0198 (3)
H240.47200.93280.56360.024*
C250.5906 (2)1.00432 (15)0.68088 (8)0.0176 (3)
H250.48361.04100.69410.021*
C260.7341 (3)0.81009 (19)0.49520 (9)0.0309 (3)
H26A0.69870.70000.48910.046*
H26B0.86860.85110.48150.046*
H26C0.63050.83310.46100.046*
H10.751 (3)0.876 (2)0.8455 (11)0.025 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0173 (4)0.0155 (4)0.0111 (4)0.0054 (3)0.0025 (3)0.0026 (3)
O20.0293 (5)0.0177 (5)0.0151 (4)0.0085 (4)0.0036 (4)0.0065 (4)
N10.0166 (5)0.0113 (5)0.0121 (5)0.0036 (4)0.0030 (4)0.0024 (4)
N20.0122 (5)0.0139 (5)0.0144 (5)0.0043 (4)0.0011 (4)0.0002 (4)
C10.0115 (5)0.0150 (6)0.0134 (6)0.0044 (4)0.0007 (4)0.0023 (5)
C20.0094 (5)0.0141 (6)0.0122 (6)0.0037 (4)0.0010 (4)0.0021 (4)
C30.0068 (5)0.0139 (6)0.0124 (6)0.0024 (4)0.0008 (4)0.0023 (4)
C40.0080 (5)0.0141 (6)0.0131 (6)0.0035 (4)0.0009 (4)0.0013 (4)
C50.0122 (5)0.0154 (6)0.0161 (6)0.0038 (4)0.0016 (4)0.0023 (5)
C60.0128 (5)0.0131 (6)0.0224 (7)0.0039 (4)0.0022 (5)0.0016 (5)
C70.0114 (5)0.0164 (6)0.0190 (6)0.0047 (5)0.0006 (5)−0.0043 (5)
C80.0131 (5)0.0210 (6)0.0130 (6)0.0063 (5)0.0017 (4)0.0006 (5)
C90.0086 (5)0.0147 (6)0.0153 (6)0.0034 (4)0.0009 (4)0.0026 (5)
C100.0102 (5)0.0124 (5)0.0159 (6)0.0041 (4)0.0005 (4)0.0039 (4)
C110.0192 (6)0.0149 (6)0.0161 (6)0.0072 (5)0.0017 (5)−0.0002 (5)
C120.0180 (6)0.0146 (6)0.0113 (6)0.0052 (5)0.0032 (5)−0.0005 (4)
C130.0243 (6)0.0133 (6)0.0139 (6)0.0051 (5)0.0056 (5)0.0020 (5)
C140.0191 (6)0.0158 (6)0.0164 (6)−0.0019 (5)0.0048 (5)0.0009 (5)
C150.0186 (6)0.0206 (6)0.0137 (6)0.0030 (5)0.0015 (5)−0.0002 (5)
C160.0238 (6)0.0174 (6)0.0152 (6)0.0039 (5)0.0011 (5)0.0048 (5)
C170.0186 (6)0.0144 (6)0.0159 (6)−0.0001 (5)0.0026 (5)0.0025 (5)
C180.0208 (7)0.0342 (8)0.0234 (7)0.0023 (6)−0.0030 (6)0.0048 (6)
C190.0173 (6)0.0133 (6)0.0133 (6)0.0040 (5)0.0032 (4)0.0040 (4)
C200.0163 (6)0.0118 (5)0.0143 (6)0.0013 (4)0.0039 (5)0.0050 (4)
C210.0172 (6)0.0171 (6)0.0161 (6)0.0047 (5)0.0024 (5)0.0058 (5)
C220.0223 (6)0.0194 (6)0.0195 (7)0.0079 (5)0.0068 (5)0.0047 (5)
C230.0267 (7)0.0169 (6)0.0143 (6)0.0037 (5)0.0043 (5)0.0034 (5)
C240.0207 (6)0.0198 (6)0.0161 (6)0.0033 (5)−0.0007 (5)0.0057 (5)
C250.0166 (6)0.0179 (6)0.0186 (6)0.0045 (5)0.0037 (5)0.0063 (5)
C260.0400 (9)0.0340 (8)0.0169 (7)0.0124 (7)0.0050 (6)0.0001 (6)

Geometric parameters (Å, °)

O1—C91.3743 (15)C13—H130.9300
O1—C11.3904 (15)C14—C151.3949 (19)
O2—C11.2180 (16)C14—H140.9300
N1—C31.3403 (16)C15—C161.3959 (19)
N1—C191.4669 (15)C15—C181.5119 (18)
N1—H10.883 (19)C16—C171.3905 (18)
N2—C101.2833 (16)C16—H160.9300
N2—C111.4682 (15)C17—H170.9300
C1—C21.4378 (17)C18—H18A0.9600
C2—C31.4133 (16)C18—H18B0.9600
C2—C101.4579 (16)C18—H18C0.9600
C3—C41.4681 (16)C19—C201.5110 (17)
C4—C91.4044 (17)C19—H19A0.9700
C4—C51.4129 (17)C19—H19B0.9700
C5—C61.3832 (18)C20—C251.3934 (18)
C5—H50.9300C20—C211.4008 (18)
C6—C71.3945 (19)C21—C221.3877 (19)
C6—H60.9300C21—H210.9300
C7—C81.3835 (18)C22—C231.4011 (19)
C7—H70.9300C22—H220.9300
C8—C91.3911 (17)C23—C241.393 (2)
C8—H80.9300C23—C261.5116 (19)
C10—H100.9300C24—C251.3945 (19)
C11—C121.5196 (17)C24—H240.9300
C11—H11A0.9700C25—H250.9300
C11—H11B0.9700C26—H26A0.9600
C12—C131.3955 (18)C26—H26B0.9600
C12—C171.3956 (18)C26—H26C0.9600
C13—C141.3928 (19)
C9—O1—C1121.68 (10)C13—C14—H14119.3
C3—N1—C19131.64 (11)C15—C14—H14119.3
C3—N1—H1111.9 (12)C14—C15—C16117.75 (12)
C19—N1—H1116.0 (12)C14—C15—C18120.63 (12)
C10—N2—C11118.27 (11)C16—C15—C18121.62 (12)
O2—C1—O1114.96 (11)C17—C16—C15121.08 (12)
O2—C1—C2127.14 (11)C17—C16—H16119.5
O1—C1—C2117.90 (10)C15—C16—H16119.5
C3—C2—C1121.68 (11)C16—C17—C12120.92 (12)
C3—C2—C10123.54 (11)C16—C17—H17119.5
C1—C2—C10114.72 (11)C12—C17—H17119.5
N1—C3—C2117.25 (11)C15—C18—H18A109.5
N1—C3—C4124.45 (11)C15—C18—H18B109.5
C2—C3—C4118.30 (11)H18A—C18—H18B109.5
C9—C4—C5116.27 (11)C15—C18—H18C109.5
C9—C4—C3117.57 (11)H18A—C18—H18C109.5
C5—C4—C3126.15 (11)H18B—C18—H18C109.5
C6—C5—C4121.64 (12)N1—C19—C20108.29 (10)
C6—C5—H5119.2N1—C19—H19A110.0
C4—C5—H5119.2C20—C19—H19A110.0
C5—C6—C7120.29 (12)N1—C19—H19B110.0
C5—C6—H6119.9C20—C19—H19B110.0
C7—C6—H6119.9H19A—C19—H19B108.4
C8—C7—C6119.77 (11)C25—C20—C21118.50 (12)
C8—C7—H7120.1C25—C20—C19121.85 (11)
C6—C7—H7120.1C21—C20—C19119.65 (11)
C7—C8—C9119.53 (12)C22—C21—C20120.64 (12)
C7—C8—H8120.2C22—C21—H21119.7
C9—C8—H8120.2C20—C21—H21119.7
O1—C9—C8114.75 (11)C21—C22—C23121.13 (12)
O1—C9—C4122.75 (11)C21—C22—H22119.4
C8—C9—C4122.50 (12)C23—C22—H22119.4
N2—C10—C2123.26 (11)C24—C23—C22117.93 (12)
N2—C10—H10118.4C24—C23—C26121.63 (13)
C2—C10—H10118.4C22—C23—C26120.44 (13)
N2—C11—C12108.96 (10)C23—C24—C25121.24 (12)
N2—C11—H11A109.9C23—C24—H24119.4
C12—C11—H11A109.9C25—C24—H24119.4
N2—C11—H11B109.9C20—C25—C24120.57 (12)
C12—C11—H11B109.9C20—C25—H25119.7
H11A—C11—H11B108.3C24—C25—H25119.7
C13—C12—C17118.25 (12)C23—C26—H26A109.5
C13—C12—C11121.18 (11)C23—C26—H26B109.5
C17—C12—C11120.38 (11)H26A—C26—H26B109.5
C14—C13—C12120.52 (12)C23—C26—H26C109.5
C14—C13—H13119.7H26A—C26—H26C109.5
C12—C13—H13119.7H26B—C26—H26C109.5
C13—C14—C15121.40 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2311).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem.12, 887–916. [PubMed]
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gürsoy, A. & Karali, N. (2003). Turk. J. Chem.27, 545–552.
  • Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2005). J. Med. Chem.48, 6400–6408. [PubMed]
  • Manolov, I. & Danchev, N. D. (1995). Eur. J. Med. Chem.30, 531–535.
  • Pratibha, S. & Shreeya, P. (1999). Indian J. Chem.38, 1139–1142.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography