PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2997–o2998.
Published online 2010 October 31. doi:  10.1107/S1600536810043242
PMCID: PMC3008997

6,8-Dibromo­quinoline

Abstract

The title mol­ecule, C9H5Br2N, is almost planar, with an r.m.s. deviation of 0.027 Å. The dihedral angle between the aromatic rings is 1.5 (3)°. In the crystal, π–π stacking inter­actions are present between the pyridine and benzene rings of adjacent mol­ecules [centroid–centroid distances = 3.634 (4) Å], and short Br(...)Br contacts [3.4443 (13) Å] occur.

Related literature

For the biological and pharmacological activities of quinolines and their derivatives, see: Abadi et al. (2005 [triangle]); Blackie et al. (2007 [triangle]); Chen et al. (2006 [triangle]); Gómez et al. (2008 [triangle]); Gómez-Barrio et al. (2006 [triangle]); Kouznetsov et al. (2005 [triangle], 2007 [triangle]); Lindley (1984 [triangle]); Metwally et al. (2006 [triangle]); Muscia et al. (2006 [triangle]); Musiol et al. (2007 [triangle]); Sissi & Palumbo (2003 [triangle]); Vangapandu et al. (2004 [triangle]); Vinsova et al. (2008 [triangle]); Vladímir et al. (2005 [triangle]); Zhao et al. (2005 [triangle]); Zhu et al. (2007 [triangle]); Şahin et al. (2008 [triangle]). For the synthesis, see: Ökten et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2997-scheme1.jpg

Experimental

Crystal data

  • C9H5Br2N
  • M r = 286.94
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2997-efi1.jpg
  • a = 7.3436 (12) Å
  • b = 9.8961 (15) Å
  • c = 13.0108 (18) Å
  • β = 109.589 (17)°
  • V = 890.8 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 11.04 mm−1
  • T = 297 K
  • 0.12 × 0.09 × 0.02 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini CCD detector
  • Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995 [triangle])T min = 0.052, T max = 0.080
  • 1598 measured reflections
  • 1598 independent reflections
  • 1075 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.141
  • S = 1.02
  • 1598 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810043242/hb5698sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810043242/hb5698Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Cumhuriyet University Research Foundation (CUBAP grant No. 2009/ F-266) for financial support.

supplementary crystallographic information

Comment

The quinoline skeleton is often used for designing of many synthetic compounds with diverse pharmacological and medicinal properties. Quinolines and their derivatives have shown to display a wide spectrum of biological activities such as antibacterial (Metwally et al., 2006), antimycobacterial (Vinsova et al., 2008; Vangapandu et al., 2004), antineoplastic (Zhao et al., 2005; Sissi & Palumbo, 2003; Musiol et al., 2007; Zhu et al., 2007), antiparasitical (Muscia et al., 2006; Blackie et al., 2007; Gómez et al., 2008; Gómez-Barrio et al., 2006; Kouznetsov et al., 2005, 2007), and anti-inflammatory behavior (Chen et al., 2006; Abadi et al., 2005; Ökten et al., 2010). Quinoline also constitutes a key structural component of numerous compounds with pharmacological activity, dyestuffs, materials with metal-halogen exchange, and agrochemical (Lindley, 1984) and couplings (Vladímir et al., 2005). Bromoquinolines have been of interest for chemists as precursors for heterocyclic compounds due to important scaffolds in medicinal chemistry. It was developed a convenient synthetic methodology for 6,8-disubstituted quinoline derivatives and the values of 6,8-dibromoquinoline as precursors to the corresponding disubstituted quinolines were presented. New disubstituted quinoline derivatives were synthesized via substition reaction by using 6,8-DiBrQ, converted to further substituted quinoline. That may serve for the synthesis of natural bioactive quinolines derivatives because there are many biological active 6 and 8- functionalized quinolines such as quinine, pentaquine, and plasmoquine (Şahin et al., 2008).

The molecular structure of the title compound (I) is shown in Fig. 1 with their respective labels. Bond lengths and angles in (I) are within normal ranges. In this structure, the quinoline motif (N1/C1–C9) is essentially planar with maxium deviations of 0.029 (7) Å for C3 and 0.031 (9) Å for C8. The Br1—C2—C3—C4 and Br2—C4—C5—C6 torsion angles are -179.0 (5) and 178.7 (5)°, respectively.

The crystal structure of (I) is stabilized by π–π stacking interactions, along the a axis, between N1/C1/C6–C9 (centroid Cg1) and C1–C6 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.634 (4) Å, (Fig. 2).

Experimental

6,8-DiBromo-1,2,3,4-tetrahydroquinoline was synthesized in proper literature (Ökten et al., 2010). Then, DDQ (2 g, 6.88 mmol) was dissolved in freshly distilled and dried bezene (10 ml) under an argon atmosphere. To a solution of 6,8-diBrTHQ (1 g, 3.44 mmol) in benzene (30 ml) was added the solution of DDQ. The mixture was refluxed at 353 K for 36 h. Upon cooling, the dark green solidified mixture was filtered and the solvent was removed in vacuo. The residue was filtered from a short silica column (1/9, EtOAc/hexane, Rf= 0.4). Recrystallization of the product from hexane–chloroform gave 6,8-diBrQ in a yield of 88% (868 mg) as colourless plates, m.p. 372–373 K. 1H NMR (CDCl3, 400 MHz) d 9.04 (dd, J23= 4.2 Hz, J24= 1.6 Hz, 1H, H2), 8.16 (d, J57= 2.4 Hz, 1H, H7), 8.09 (dd, J43= 8.3 Hz, J24= 1.6 Hz, 1H, H4), 7.96 (d, J57= 2.4 Hz, 1H, H5), 7.49 (dd, J32= 4.2 Hz, J34= 8.3 Hz, 1H, H3); 13C NMR (100 MHz, CDCl3) d 151.5, 144.1135.9, 135.7, 130.1, 129.7, 125.9, 122.7, 119.9; IR (KBr, cm-1) vmax 3026, 1638, 1617, 1587, 1545, 1467, 1443, 1347, 1306, 1183, 1084, 1030, 962, 857, 809, 779, 677, 593, 543, 501. GC–MS m/z 289 (5, M+), 288 (50), 287 (10), 286 (98), 285 (10), 284 (42), 207 (30), 205 (31), 129 (5), 127 (10), 126 (100), 125 (14), 103 (15), 102 (14), 99 (37), 98 (33), 97 (20), 75 (19), 74 (22), 73 (42), 50 (18), 49 (52), 48 (14), 37 (7), 36 (7). Anal. Calcd for C9H5NBr2 (286.95): C 37.67, H 1.76%. Found: C 37.78, H 1.82%.

Refinement

H atoms were included in geometric positions with C—H = 0.93 Å and refined by using a riding model [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The title molecule with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
Fig. 2.
View of the packing of (I) down the a axis.

Crystal data

C9H5Br2NF(000) = 544
Mr = 286.94Dx = 2.140 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 1247 reflections
a = 7.3436 (12) Åθ = 3.6–70.3°
b = 9.8961 (15) ŵ = 11.04 mm1
c = 13.0108 (18) ÅT = 297 K
β = 109.589 (17)°Plate, colourless
V = 890.8 (3) Å30.12 × 0.09 × 0.02 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini CCD detector1598 independent reflections
Radiation source: Enhance (Cu) X-ray Source1075 reflections with I > 2σ(I)
graphiteRint = 0.0000
ω scansθmax = 70.5°, θmin = 5.8°
Absorption correction: part of the refinement model (ΔF) [XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters]h = −8→8
Tmin = 0.052, Tmax = 0.080k = 0→11
1598 measured reflectionsl = 0→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0642P)2] where P = (Fo2 + 2Fc2)/3
1598 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.93324 (12)0.16374 (8)0.01474 (6)0.0736 (3)
Br20.54665 (13)0.49672 (10)−0.34185 (6)0.0832 (4)
N10.8781 (8)0.4050 (6)0.1454 (4)0.0641 (19)
C10.8034 (8)0.4311 (7)0.0368 (5)0.055 (2)
C20.8120 (8)0.3287 (6)−0.0384 (5)0.0528 (19)
C30.7418 (9)0.3499 (7)−0.1488 (5)0.0595 (19)
C40.6545 (9)0.4739 (7)−0.1875 (5)0.0550 (19)
C50.6420 (9)0.5744 (7)−0.1208 (5)0.059 (2)
C60.7184 (9)0.5558 (7)−0.0071 (5)0.058 (2)
C70.7125 (10)0.6584 (8)0.0673 (6)0.067 (3)
C80.7919 (11)0.6338 (9)0.1768 (6)0.075 (3)
C90.8687 (11)0.5055 (9)0.2115 (6)0.075 (3)
H30.752100.28330−0.197000.0710*
H50.583300.65570−0.149500.0710*
H70.655600.741400.042200.0800*
H80.794700.701000.227300.0900*
H90.916800.489400.286200.0900*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0902 (6)0.0440 (5)0.0739 (5)0.0092 (4)0.0106 (4)0.0044 (3)
Br20.1024 (7)0.0722 (7)0.0649 (5)0.0056 (5)0.0146 (4)0.0115 (4)
N10.065 (3)0.056 (4)0.068 (3)−0.007 (3)0.018 (2)−0.005 (3)
C10.047 (3)0.040 (4)0.074 (4)−0.003 (3)0.014 (3)−0.004 (3)
C20.052 (3)0.033 (4)0.070 (3)0.001 (3)0.016 (3)0.005 (3)
C30.057 (3)0.049 (4)0.066 (3)−0.001 (3)0.012 (3)−0.001 (3)
C40.056 (3)0.046 (4)0.061 (3)−0.001 (3)0.017 (3)0.009 (3)
C50.055 (3)0.043 (4)0.076 (4)0.004 (3)0.019 (3)0.002 (3)
C60.050 (3)0.047 (4)0.078 (4)0.001 (3)0.024 (3)−0.004 (3)
C70.067 (4)0.052 (5)0.084 (4)0.005 (3)0.030 (3)−0.007 (4)
C80.079 (5)0.068 (6)0.084 (5)−0.004 (4)0.036 (4)−0.013 (4)
C90.077 (5)0.078 (6)0.070 (4)−0.016 (4)0.025 (3)−0.015 (4)

Geometric parameters (Å, °)

Br1—C21.877 (6)C5—C61.407 (9)
Br2—C41.909 (6)C6—C71.414 (10)
N1—C11.358 (8)C7—C81.368 (10)
N1—C91.332 (10)C8—C91.401 (12)
C1—C21.425 (9)C3—H30.9300
C1—C61.414 (10)C5—H50.9300
C2—C31.370 (9)C7—H70.9300
C3—C41.398 (10)C8—H80.9300
C4—C51.343 (9)C9—H90.9300
Br1···Br1i3.4443 (13)
C1—N1—C9116.1 (6)C5—C6—C7122.2 (6)
N1—C1—C2118.9 (6)C6—C7—C8119.0 (7)
N1—C1—C6123.8 (6)C7—C8—C9118.8 (7)
C2—C1—C6117.3 (6)N1—C9—C8124.8 (7)
Br1—C2—C1119.4 (5)C2—C3—H3121.00
Br1—C2—C3119.0 (5)C4—C3—H3121.00
C1—C2—C3121.6 (6)C4—C5—H5120.00
C2—C3—C4118.6 (6)C6—C5—H5120.00
Br2—C4—C3117.5 (5)C6—C7—H7120.00
Br2—C4—C5119.9 (5)C8—C7—H7120.00
C3—C4—C5122.7 (6)C7—C8—H8121.00
C4—C5—C6119.5 (6)C9—C8—H8121.00
C1—C6—C5120.3 (6)N1—C9—H9118.00
C1—C6—C7117.5 (6)C8—C9—H9118.00
C9—N1—C1—C2178.9 (6)C1—C2—C3—C4−2.1 (10)
C9—N1—C1—C6−0.3 (10)C2—C3—C4—C52.1 (11)
C1—N1—C9—C8−1.3 (12)C2—C3—C4—Br2−176.9 (5)
N1—C1—C2—Br1−2.1 (8)Br2—C4—C5—C6178.7 (5)
N1—C1—C2—C3−179.0 (6)C3—C4—C5—C6−0.3 (11)
C6—C1—C2—C30.3 (9)C4—C5—C6—C7179.0 (7)
N1—C1—C6—C5−179.2 (6)C4—C5—C6—C1−1.6 (10)
C6—C1—C2—Br1177.2 (5)C1—C6—C7—C81.4 (11)
C2—C1—C6—C51.6 (10)C5—C6—C7—C8−179.2 (7)
C2—C1—C6—C7−179.0 (6)C6—C7—C8—C9−2.8 (12)
N1—C1—C6—C70.2 (10)C7—C8—C9—N12.9 (13)
Br1—C2—C3—C4−179.0 (5)

Symmetry codes: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5698).

References

  • Abadi, A., Hegazy, G. & El-Zaher, A. (2005). Bioorg. Med. Chem 13, 5759–5765. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Blackie, M. A. L., Beagley, P., Croft, S. L., Kendrick, H., Moss, J. R. & Chibale, K. (2007). Bioorg. Med. Chem.15, 6510–6516. [PubMed]
  • Chen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem.14, 4373–4378. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gómez, C. M. M., Kouznetsov, V. V., Sortino, M. A., Álvarez, S. L. & Zacchino, S. A. (2008). Bioorg. Med. Chem.16, 7908–7920. [PubMed]
  • Gómez-Barrio, A., Montero-Pereira, D., Nogal-Ruiz, J. J., Escario, J. A., Muelas-Serrano, S., Kouznetsov, V. V., Vargas Mendez, L. Y., Urbina González, J. M. & Ochoa, C. (2006). Acta Parasitol 51, 73–78.
  • Kouznetsov, V. V., Mendez, L. Y. V. & Gomez, C. M. M. (2005). Curr. Org. Chem.9, 141–146.
  • Kouznetsov, V. V., Méndez, L. Y. V., Leal, S. M., Cruz, U. M., Coronado, C. A., Gómez, C. M. M., Bohórquez, A. R. R. & Rivero, P. E. (2007). Lett. Drug. Des. Discov.4, 293–296.
  • Lindley, J. (1984). Tetrahedron, 40, 1433–1456.
  • Metwally, K. A., Abdel-Aziz, L. M., Lashine, E. M., Husseiny, M. I. & Badawy, R. H. (2006). Bioorg. Med. Chem 4, 8675–8682. [PubMed]
  • Muscia, G. C., Bollini, M., Carnevale, J. P., Bruno, A. M. & Asís, S. E. (2006). Tetrahedron Lett 47, 8811–8815.
  • Musiol, R., Jampilek, J., Kralova, K., Richardson, D. R., Kalinowski, D., Podeszwa, B., Finster, J., Niedbala, H., Palka, A. & Polanski, J. (2007). Bioorg. Med. Chem.15, 1280–1288. [PubMed]
  • Ökten, S., Çakmak, O. & Erenler, R. (2010). Beilstein J. Chem. In the press.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst.28, 53–56.
  • Şahin, A., Çakmak, O., Demirtaş, İ., Ökten, S. & Tutar, A. (2008). Tetrahedron, 64, 10068–10074.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sissi, C. & Palumbo, M. (2003). Curr. Med. Chem. Anti-Canc. Agents, 3, 439–450. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vangapandu, S., Jain, M., Jain, R., Kaur, S. & Singh, P. P. (2004). Bioorg. Med. Chem.12, 2501–2508. [PubMed]
  • Vinsova, J., Imramovsky, A., Jampilek, J., Monreal-Ferriz, J. & Dolezal, M. (2008). Anti-Infective Agents Med. Chem.7, 12–31.
  • Vladímir, V., Kouznetsov, V. V., Vargas Méndez, L. Y. & Gómez, C. M. (2005). Curr. Org. Chem.9, 141–146.
  • Zhao, Y. L., Chen, Y. L., Chang, F. S. & Tzeng, C. T. (2005). Eur. J. Med. Chem.40, 792–797. [PubMed]
  • Zhu, X. Y., Mardenborough, L. G., Li, S., Khan, A., Zhang, W., Fan, P., Jacob, M., Khan, S., Walker, L. & Ablordeppey, S. Y. (2007). Bioorg. Med. Chem.15, 686–695. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography