PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2851.
Published online 2010 October 20. doi:  10.1107/S1600536810041115
PMCID: PMC3008995

Methyl 3-[(E,E)-3-phenyl­prop-2-enyl­idene]dithio­carbazate

Abstract

In the title compound, C11H12N2S2, the dithio­carbazate group adopts an EE configuration with respect to the C=C and C=N bonds of the propenyl­idene group. The atoms of the propenyl­idene and dithio­carbazate unit are essentially co-planar, with a maximum deviation of 0.058 (1) Å; the phenyl ring forms a dihedral angle of 18.3 (1)° with this fragment. In the crystal, mol­ecules form inversion dimers via pairs of N—H(...)S hydrogen bonds involving the terminal S atom.

Related literature

For the synthesis and a related structure, see: Tarafder et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2851-scheme1.jpg

Experimental

Crystal data

  • C11H12N2S2
  • M r = 236.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2851-efi1.jpg
  • a = 10.408 (2) Å
  • b = 5.4950 (9) Å
  • c = 20.988 (2) Å
  • β = 100.697 (10)°
  • V = 1179.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 293 K
  • 0.40 × 0.15 × 0.12 mm

Data collection

  • Enraf–Nonius DIP1030 image-plate diffractometer
  • 6316 measured reflections
  • 2048 independent reflections
  • 1569 reflections with I > 2.0σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.116
  • S = 1.04
  • 2048 reflections
  • 138 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: XPRESS (MacScience, 2002 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810041115/pv2336sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041115/pv2336Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MTHT, SSK and MAAAAI are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. EZ thanks MIUR, Rome (PRIN No. 2007HMTJWP_002) for financial support.

supplementary crystallographic information

Comment

The molecule of the title compound is shown in Fig. 1. The atoms of propenylidene and dithiocarbazate moiety lie essentially in the same plane, with a maximum deviation from the mean plane of 0.058 (1) Å exhibited by S2, while the phenyl ring forms a dihedral angle of 18.3 (1)° with the cited fragment. The crystal packing evidences molecules connected in pairs about inversion centers and connected by N1—H1···S1 hydrogen bonds involving the terminal sulfur atom (Table 1). The structural features of the title compound are smilar to those observed in a benzyl derivative (Tarafder et al., 2008)). The Schiff base is potentially bidentate and coordinates via the β-nitrogen and the thiolate anion generated during complexation.

Experimental

The S-methyldithiocarbazate (2.44 g, 0.2 mol), prepared as previously described (Tarafder et al., 2008), was dissolved in hot absolute ethanol (30–40 ml). To this solution an equimolar amount of cinnamaldehyde in hot absolute ethanol (20 ml) was added and the mixture was heated for 20 min and then cooled. The orange precipitate thus formed was separated and dried in vacuo over anhydrous CaCl2. Orange needle shaped single crystals of the Schiff base were obtained after recrysallization from acetone over 15 days; M. p. 443 K (very sharp and abrupt).

Refinement

All H atoms were located geometrically and treated as riding atoms, with N—H = 0.86 and C—H = 0.93 and 0.96 Å for aryl and methyl H-atoms with Uĩso~(H) = 1.2U~eq~(N or aryl-C) or 1.5U~eq~(methyl-C).

Figures

Fig. 1.
ORTEP drawing of the title molecule; thermal ellipsoids are drawn at the 40% probability level.

Crystal data

C11H12N2S2F(000) = 496
Mr = 236.35Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 275 reflections
a = 10.408 (2) Åθ = 3.6–20.7°
b = 5.4950 (9) ŵ = 0.42 mm1
c = 20.988 (2) ÅT = 293 K
β = 100.697 (10)°Needle, orange
V = 1179.5 (3) Å30.40 × 0.15 × 0.12 mm
Z = 4

Data collection

Enraf–Nonius DIP1030 image-plate diffractometer1569 reflections with I > 2.0σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
graphiteθmax = 25.3°, θmin = 3.1°
[var phi]–scans with narrow framesh = −12→12
6316 measured reflectionsk = −6→6
2048 independent reflectionsl = −25→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.116w = 1/[σ2(Fo2) + (0.0721P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2048 reflectionsΔρmax = 0.14 e Å3
138 parametersΔρmin = −0.21 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (4)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.15322 (6)0.68232 (10)0.57196 (3)0.0759 (2)
S21.08034 (6)0.51686 (10)0.69852 (3)0.0734 (2)
N10.99960 (18)0.3187 (3)0.58644 (8)0.0682 (5)
H10.99620.29150.54580.082*
N20.92717 (19)0.1751 (3)0.62061 (9)0.0680 (5)
C11.1813 (3)0.7789 (4)0.72034 (11)0.0791 (6)
H1A1.26530.75250.70890.119*
H1B1.19180.80590.76620.119*
H1C1.14070.91870.69760.119*
C21.0751 (2)0.4996 (3)0.61523 (10)0.0625 (5)
C30.8633 (2)0.0018 (3)0.58766 (11)0.0656 (5)
H30.8723−0.02250.54490.079*
C40.7788 (2)−0.1538 (3)0.61562 (10)0.0670 (5)
H40.7718−0.12940.65870.080*
C50.7095 (2)−0.3328 (3)0.58259 (10)0.0653 (5)
H50.7240−0.36130.54080.078*
C60.6139 (2)−0.4880 (3)0.60503 (10)0.0634 (5)
C70.5705 (3)−0.4487 (4)0.66304 (12)0.0750 (6)
H70.6053−0.32080.68980.090*
C80.4770 (3)−0.5962 (5)0.68147 (14)0.0898 (7)
H80.4487−0.56590.72020.108*
C90.4250 (3)−0.7874 (5)0.64316 (17)0.0963 (9)
H90.3623−0.88700.65600.116*
C100.4657 (3)−0.8309 (4)0.58615 (16)0.0944 (8)
H100.4305−0.96030.56010.113*
C110.5596 (3)−0.6831 (4)0.56675 (13)0.0799 (7)
H110.5866−0.71460.52770.096*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0761 (5)0.0872 (4)0.0662 (4)−0.0152 (3)0.0178 (3)0.0061 (2)
S20.0809 (5)0.0799 (4)0.0592 (4)−0.0143 (3)0.0122 (3)0.0035 (2)
N10.0743 (13)0.0726 (10)0.0600 (10)−0.0089 (9)0.0181 (9)−0.0002 (7)
N20.0681 (12)0.0698 (10)0.0670 (10)−0.0066 (8)0.0150 (9)0.0030 (8)
C10.0811 (17)0.0813 (13)0.0730 (14)−0.0110 (12)0.0092 (12)−0.0046 (10)
C20.0574 (13)0.0664 (12)0.0636 (12)0.0012 (9)0.0112 (9)0.0024 (8)
C30.0686 (15)0.0647 (12)0.0631 (12)0.0011 (10)0.0111 (10)0.0014 (8)
C40.0698 (15)0.0673 (11)0.0631 (12)−0.0028 (10)0.0104 (10)0.0010 (9)
C50.0682 (14)0.0658 (12)0.0611 (11)0.0013 (10)0.0099 (10)−0.0002 (8)
C60.0633 (14)0.0560 (10)0.0683 (13)0.0023 (8)0.0057 (10)0.0036 (8)
C70.0799 (17)0.0700 (12)0.0756 (14)−0.0059 (11)0.0160 (12)0.0006 (10)
C80.090 (2)0.0870 (15)0.0964 (18)−0.0020 (14)0.0276 (15)0.0160 (13)
C90.0772 (18)0.0813 (16)0.129 (3)−0.0085 (13)0.0151 (17)0.0274 (16)
C100.091 (2)0.0722 (15)0.114 (2)−0.0154 (13)0.0022 (17)−0.0017 (13)
C110.0866 (18)0.0680 (13)0.0813 (15)−0.0038 (12)0.0061 (13)−0.0054 (10)

Geometric parameters (Å, °)

S1—C21.664 (2)C5—C61.454 (3)
S2—C21.741 (2)C5—H50.9300
S2—C11.791 (2)C6—C71.392 (3)
N1—C21.339 (3)C6—C111.395 (3)
N1—N21.381 (2)C7—C81.376 (3)
N1—H10.8600C7—H70.9300
N2—C31.287 (3)C8—C91.372 (4)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—C101.363 (4)
C1—H1C0.9600C9—H90.9300
C3—C41.428 (3)C10—C111.388 (4)
C3—H30.9300C10—H100.9300
C4—C51.335 (3)C11—H110.9300
C4—H40.9300
C2—S2—C1102.02 (11)C4—C5—H5116.6
C2—N1—N2121.39 (18)C6—C5—H5116.6
C2—N1—H1119.3C7—C6—C11117.4 (2)
N2—N1—H1119.3C7—C6—C5123.05 (18)
C3—N2—N1114.92 (18)C11—C6—C5119.5 (2)
S2—C1—H1A109.5C8—C7—C6121.1 (2)
S2—C1—H1B109.5C8—C7—H7119.5
H1A—C1—H1B109.5C6—C7—H7119.5
S2—C1—H1C109.5C9—C8—C7120.6 (3)
H1A—C1—H1C109.5C9—C8—H8119.7
H1B—C1—H1C109.5C7—C8—H8119.7
N1—C2—S1120.44 (16)C10—C9—C8119.7 (3)
N1—C2—S2113.58 (15)C10—C9—H9120.1
S1—C2—S2125.98 (12)C8—C9—H9120.1
N2—C3—C4121.2 (2)C9—C10—C11120.4 (2)
N2—C3—H3119.4C9—C10—H10119.8
C4—C3—H3119.4C11—C10—H10119.8
C5—C4—C3122.8 (2)C10—C11—C6120.8 (3)
C5—C4—H4118.6C10—C11—H11119.6
C3—C4—H4118.6C6—C11—H11119.6
C4—C5—C6126.9 (2)
C2—N1—N2—C3−177.27 (18)C4—C5—C6—C11−173.6 (2)
N2—N1—C2—S1−175.70 (15)C11—C6—C7—C8−0.5 (3)
N2—N1—C2—S24.4 (2)C5—C6—C7—C8178.1 (2)
C1—S2—C2—N1−177.67 (16)C6—C7—C8—C90.6 (4)
C1—S2—C2—S12.41 (18)C7—C8—C9—C10−0.4 (4)
N1—N2—C3—C4−176.76 (18)C8—C9—C10—C110.1 (4)
N2—C3—C4—C5178.9 (2)C9—C10—C11—C60.0 (4)
C3—C4—C5—C6−174.93 (19)C7—C6—C11—C100.2 (3)
C4—C5—C6—C77.9 (3)C5—C6—C11—C10−178.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.673.4086 (19)145

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2336).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • MacScience (2002). XPRESS MacScience Co. Ltd, Yokohama, Japan.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042–o1043. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography