PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1361.
Published online 2010 October 9. doi:  10.1107/S1600536810038973
PMCID: PMC3008993

Bis[4-(4-chloro­benzo­yl)-3-methyl-1-phenyl-1H-pyrazol-5-olato-κ2 O,O′]bis­(methanol-κO)nickel(II)

Abstract

The mol­ecular structure of the neutral mononuclear title complex, [Ni(C17H12ClN2O2)2(CH3OH)2], is centrosymmetric. The NiII atom, which is located on an inversion center, is in a distorted octahedral coordination, defined by four O atoms from two ligands as well as two O atoms from two methanol mol­ecules. Inter­molecular O—H(...)N hydrogen bonds between the hy­droxy group of methanol and a pyrazole N atom link the mol­ecules, forming a two-dimensional network parallel to (100).

Related literature

For general background to Schiff base compounds in coordin­ation chemistry, see: Harrop et al. (2003 [triangle]); Yu et al. (1993 [triangle]); Wu et al. (1993 [triangle]). For the anti­bacterial properties of Schiff bases derived from 4-acyl-5-pyrazolo­nes and their metal complexes, see: Li et al. (1997 [triangle], 2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1361-scheme1.jpg

Experimental

Crystal data

  • [Ni(C17H12ClN2O2)2(CH4O)2]
  • M r = 746.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1361-efi1.jpg
  • a = 11.8398 (7) Å
  • b = 12.3162 (7) Å
  • c = 13.2104 (8) Å
  • β = 114.706 (1)°
  • V = 1750.03 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.76 mm−1
  • T = 296 K
  • 0.24 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.834, T max = 0.872
  • 8808 measured reflections
  • 3089 independent reflections
  • 2534 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.094
  • S = 1.03
  • 3089 reflections
  • 225 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038973/bh2312sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038973/bh2312Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20771083).

supplementary crystallographic information

Comment

In recent years, Schiff base complexes with metals have generated a wide interest because they possess a large spectrum of biological, pharmaceutical and catalytic properties, such as antitumor and antioxidative activities, as well as the inhibition of lipid peroxidation, among others (Harrop et al., 2003; Yu et al., 1993; Wu et al., 1993). The Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes have also been widely studied for their high antibacterial activity (Li et al., 1997, 2004). In this paper, we report the synthesis and crystal structure of the title compound, (I), containing a β-ketoamine ligand with organic chlorine, based on a pyrazolone derivative.

The molecular structure of (I) reveals a neutral centrosymmetric mononuclear complex, with the asymmetric unit comprising a half molecule (Fig. 1). The distorted octahedral NiII center, which locates on a crystallographic inversion center, is coordinated to four O donors from a couple of ligands, and two O atoms from two methanol molecules. The equatorial Ni—O bond lengths are comparable with an average value of 2.0345 (6) Å, which are significantly shorter than that of the axial Ni—O distance of 2.0651 (16) Å. The cis bond angles around the NiII center range from 88.47 (7) to 91.53 (7)°. Intermolecular hydrogen bonds (Table 1) link the molecules together, forming a two-dimensional network (Fig. 2).

Experimental

A mixture of Ni(OAc)2.4H2O (24.8 mg, 0.10 mmol), 4(Z)-4-((4-chlorophenyl)(hydroxy)methylene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (62.6 mg, 0.20 mmol) and methanol (12 ml) was heated at 433 K for 2 days in a sealed Teflon-lined stainless steel vessel (20 mL) under autogenous pressure. After the reaction system was slowly cooled down to the room temperature, it was placed to stand at room temperature for a period of four weeks, affording green block crystals in 60% yield.

Refinement

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with C—H distances in the range 0.93–0.96 Å, and O—H = 0.85 Å. Isotropic displacement parameters were calculated as Uiso(H)=1.2 or 1.5Ueq(carrier atom).

Figures

Fig. 1.
The molecular structure of (I), with anisotropic displacement ellipsoids drawn at the 30° probability level. [Symmetry code:(i)1-x,-y,-z.]
Fig. 2.
The two-dimensional supra-molecular network of (I) produced by the inter-molecular O-H···N weak hydrogen-bonding interactions.

Crystal data

[Ni(C17H12ClN2O2)2(CH4O)2]F(000) = 772
Mr = 746.27Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3041 reflections
a = 11.8398 (7) Åθ = 2.4–25.4°
b = 12.3162 (7) ŵ = 0.76 mm1
c = 13.2104 (8) ÅT = 296 K
β = 114.706 (1)°Block, green
V = 1750.03 (18) Å30.24 × 0.22 × 0.18 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer3089 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −14→8
Tmin = 0.834, Tmax = 0.872k = −14→14
8808 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0466P)2 + 0.7427P] where P = (Fo2 + 2Fc2)/3
3089 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.34 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.00000.00000.03539 (14)
Cl10.04928 (8)0.55881 (7)−0.33203 (7)0.0790 (3)
O10.39759 (15)0.13217 (12)−0.07861 (12)0.0421 (4)
O20.61693 (14)0.09579 (12)0.12531 (12)0.0423 (4)
O30.39208 (16)−0.01739 (13)0.08784 (14)0.0476 (4)
H3A0.3970−0.07840.11960.071*
C10.1856 (2)0.2801 (2)−0.1767 (2)0.0613 (7)
H10.15670.2100−0.17650.074*
C20.1060 (3)0.3578 (2)−0.2451 (3)0.0667 (8)
H20.02340.3406−0.28930.080*
C30.1491 (3)0.4595 (2)−0.2474 (2)0.0529 (6)
C40.2709 (3)0.4855 (2)−0.1845 (2)0.0609 (8)
H40.30060.5545−0.18870.073*
C50.3491 (2)0.4082 (2)−0.1151 (2)0.0553 (7)
H50.43170.4258−0.07160.066*
C60.3072 (2)0.30524 (18)−0.10879 (18)0.0407 (5)
C70.3925 (2)0.22122 (17)−0.03395 (18)0.0379 (5)
C80.4653 (2)0.24382 (18)0.08010 (18)0.0403 (5)
C90.4556 (2)0.32600 (19)0.1533 (2)0.0457 (6)
N20.54567 (19)0.31717 (16)0.25322 (17)0.0483 (5)
N10.61951 (18)0.22984 (15)0.24962 (15)0.0427 (5)
C110.5709 (2)0.17991 (17)0.14723 (18)0.0376 (5)
C100.3568 (3)0.4093 (2)0.1350 (2)0.0698 (9)
H10A0.36320.43540.20560.105*
H10B0.27640.37710.09470.105*
H10C0.36740.46870.09280.105*
C120.7225 (2)0.19863 (18)0.34771 (19)0.0429 (6)
C130.7201 (3)0.2167 (2)0.4506 (2)0.0538 (7)
H130.65010.24680.45480.065*
C140.8222 (3)0.1898 (2)0.5459 (2)0.0695 (9)
H140.82110.20230.61490.083*
C150.9255 (3)0.1449 (3)0.5412 (2)0.0766 (10)
H150.99420.12730.60630.092*
C160.9266 (3)0.1260 (3)0.4383 (3)0.0714 (9)
H160.99630.09490.43450.086*
C170.8256 (2)0.1529 (2)0.3416 (2)0.0543 (7)
H170.82700.14020.27270.065*
C200.2607 (3)−0.0031 (2)0.0339 (3)0.0652 (8)
H20A0.23940.06760.05120.098*
H20B0.2207−0.05760.05950.098*
H20C0.2335−0.0097−0.04520.098*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0489 (3)0.0260 (2)0.0311 (2)0.00240 (17)0.01650 (18)−0.00093 (16)
Cl10.0751 (5)0.0799 (6)0.0691 (5)0.0358 (4)0.0176 (4)0.0205 (4)
O10.0575 (10)0.0310 (8)0.0355 (8)0.0043 (7)0.0170 (7)−0.0009 (7)
O20.0486 (9)0.0340 (8)0.0383 (9)0.0065 (7)0.0124 (7)−0.0067 (7)
O30.0580 (11)0.0439 (10)0.0459 (10)0.0027 (8)0.0266 (8)0.0103 (7)
C10.0505 (16)0.0468 (16)0.0721 (19)−0.0082 (12)0.0114 (14)0.0034 (13)
C20.0428 (15)0.067 (2)0.0699 (19)−0.0032 (13)0.0034 (14)0.0038 (15)
C30.0528 (16)0.0539 (16)0.0483 (15)0.0150 (13)0.0173 (13)0.0065 (12)
C40.0630 (18)0.0404 (15)0.0701 (19)0.0015 (12)0.0187 (15)0.0158 (13)
C50.0474 (15)0.0422 (14)0.0627 (17)−0.0024 (12)0.0096 (13)0.0075 (12)
C60.0470 (14)0.0345 (12)0.0400 (13)0.0002 (10)0.0175 (11)−0.0025 (10)
C70.0440 (13)0.0309 (12)0.0397 (12)−0.0017 (9)0.0186 (10)0.0005 (9)
C80.0500 (14)0.0307 (12)0.0375 (12)0.0033 (10)0.0155 (11)−0.0027 (10)
C90.0525 (15)0.0374 (13)0.0437 (13)0.0047 (11)0.0165 (12)−0.0054 (11)
N20.0574 (13)0.0392 (11)0.0458 (12)0.0072 (9)0.0191 (10)−0.0108 (9)
N10.0508 (12)0.0353 (10)0.0380 (10)0.0050 (9)0.0147 (9)−0.0063 (8)
C110.0464 (13)0.0319 (11)0.0348 (12)−0.0017 (10)0.0174 (10)−0.0035 (9)
C100.080 (2)0.0624 (18)0.0577 (18)0.0262 (16)0.0197 (16)−0.0109 (14)
C120.0522 (14)0.0317 (12)0.0372 (12)−0.0025 (10)0.0112 (11)−0.0012 (10)
C130.0681 (18)0.0466 (15)0.0426 (14)0.0009 (13)0.0192 (13)−0.0045 (11)
C140.099 (2)0.0566 (18)0.0400 (15)0.0049 (17)0.0166 (16)−0.0028 (13)
C150.084 (2)0.065 (2)0.0479 (17)0.0118 (17)−0.0044 (16)−0.0003 (14)
C160.0635 (19)0.072 (2)0.0637 (19)0.0156 (16)0.0115 (15)0.0039 (16)
C170.0572 (16)0.0520 (16)0.0481 (15)0.0063 (13)0.0166 (13)0.0006 (12)
C200.0612 (19)0.0661 (19)0.079 (2)0.0106 (14)0.0405 (16)0.0183 (15)

Geometric parameters (Å, °)

Ni1—O22.0330 (15)C8—C91.438 (3)
Ni1—O2i2.0330 (15)C9—N21.309 (3)
Ni1—O12.0361 (15)C9—C101.497 (3)
Ni1—O1i2.0361 (15)N2—N11.399 (3)
Ni1—O3i2.0651 (16)N1—C111.374 (3)
Ni1—O32.0651 (16)N1—C121.411 (3)
Cl1—C31.744 (3)C10—H10A0.9600
O1—C71.259 (3)C10—H10B0.9600
O2—C111.259 (3)C10—H10C0.9600
O3—C201.425 (3)C12—C171.378 (3)
O3—H3A0.8505C12—C131.389 (3)
C1—C61.376 (3)C13—C141.373 (4)
C1—C21.382 (4)C13—H130.9300
C1—H10.9300C14—C151.367 (4)
C2—C31.357 (4)C14—H140.9300
C2—H20.9300C15—C161.385 (4)
C3—C41.368 (4)C15—H150.9300
C4—C51.377 (4)C16—C171.376 (4)
C4—H40.9300C16—H160.9300
C5—C61.376 (3)C17—H170.9300
C5—H50.9300C20—H20A0.9600
C6—C71.494 (3)C20—H20B0.9600
C7—C81.416 (3)C20—H20C0.9600
C8—C111.429 (3)
O2—Ni1—O2i180.00 (10)C7—C8—C9132.1 (2)
O2—Ni1—O190.52 (6)C11—C8—C9105.41 (19)
O2i—Ni1—O189.48 (6)N2—C9—C8111.0 (2)
O2—Ni1—O1i89.48 (6)N2—C9—C10118.2 (2)
O2i—Ni1—O1i90.52 (6)C8—C9—C10130.6 (2)
O1—Ni1—O1i180.00 (5)C9—N2—N1106.68 (18)
O2—Ni1—O3i91.53 (7)C11—N1—N2111.53 (18)
O2i—Ni1—O3i88.47 (7)C11—N1—C12128.86 (19)
O1—Ni1—O3i90.39 (6)N2—N1—C12119.36 (18)
O1i—Ni1—O3i89.61 (6)O2—C11—N1123.5 (2)
O2—Ni1—O388.47 (7)O2—C11—C8131.4 (2)
O2i—Ni1—O391.53 (7)N1—C11—C8105.20 (18)
O1—Ni1—O389.61 (6)C9—C10—H10A109.5
O1i—Ni1—O390.39 (6)C9—C10—H10B109.5
O3i—Ni1—O3180.00 (6)H10A—C10—H10B109.5
C7—O1—Ni1126.33 (14)C9—C10—H10C109.5
C11—O2—Ni1116.87 (14)H10A—C10—H10C109.5
C20—O3—Ni1120.58 (16)H10B—C10—H10C109.5
C20—O3—H3A101.0C17—C12—C13120.3 (2)
Ni1—O3—H3A116.0C17—C12—N1120.3 (2)
C6—C1—C2120.9 (3)C13—C12—N1119.4 (2)
C6—C1—H1119.6C14—C13—C12119.2 (3)
C2—C1—H1119.6C14—C13—H13120.4
C3—C2—C1119.5 (3)C12—C13—H13120.4
C3—C2—H2120.2C15—C14—C13121.1 (3)
C1—C2—H2120.2C15—C14—H14119.4
C2—C3—C4120.9 (2)C13—C14—H14119.4
C2—C3—Cl1120.0 (2)C14—C15—C16119.3 (3)
C4—C3—Cl1119.0 (2)C14—C15—H15120.4
C3—C4—C5119.1 (2)C16—C15—H15120.4
C3—C4—H4120.4C17—C16—C15120.6 (3)
C5—C4—H4120.4C17—C16—H16119.7
C6—C5—C4121.3 (2)C15—C16—H16119.7
C6—C5—H5119.4C16—C17—C12119.4 (3)
C4—C5—H5119.4C16—C17—H17120.3
C5—C6—C1118.2 (2)C12—C17—H17120.3
C5—C6—C7121.1 (2)O3—C20—H20A109.5
C1—C6—C7120.6 (2)O3—C20—H20B109.5
O1—C7—C8122.9 (2)H20A—C20—H20B109.5
O1—C7—C6116.40 (19)O3—C20—H20C109.5
C8—C7—C6120.69 (19)H20A—C20—H20C109.5
C7—C8—C11122.5 (2)H20B—C20—H20C109.5
O2—Ni1—O1—C7−22.71 (18)C6—C7—C8—C918.3 (4)
O2i—Ni1—O1—C7157.29 (18)C7—C8—C9—N2−179.0 (2)
O3i—Ni1—O1—C7−114.24 (18)C11—C8—C9—N21.7 (3)
O3—Ni1—O1—C765.76 (18)C7—C8—C9—C106.5 (5)
O1—Ni1—O2—C1130.69 (16)C11—C8—C9—C10−172.8 (3)
O1i—Ni1—O2—C11−149.31 (16)C8—C9—N2—N10.8 (3)
O3i—Ni1—O2—C11121.10 (16)C10—C9—N2—N1176.1 (2)
O3—Ni1—O2—C11−58.90 (16)C9—N2—N1—C11−3.2 (3)
O2—Ni1—O3—C20132.23 (18)C9—N2—N1—C12−177.8 (2)
O2i—Ni1—O3—C20−47.77 (18)Ni1—O2—C11—N1155.00 (18)
O1—Ni1—O3—C2041.70 (18)Ni1—O2—C11—C8−25.3 (3)
O1i—Ni1—O3—C20−138.30 (18)N2—N1—C11—O2−176.1 (2)
C6—C1—C2—C31.6 (5)C12—N1—C11—O2−2.0 (4)
C1—C2—C3—C41.3 (5)N2—N1—C11—C84.1 (3)
C1—C2—C3—Cl1−179.2 (2)C12—N1—C11—C8178.1 (2)
C2—C3—C4—C5−2.5 (5)C7—C8—C11—O2−2.6 (4)
Cl1—C3—C4—C5178.1 (2)C9—C8—C11—O2176.8 (2)
C3—C4—C5—C60.7 (5)C7—C8—C11—N1177.1 (2)
C4—C5—C6—C12.1 (4)C9—C8—C11—N1−3.4 (3)
C4—C5—C6—C7179.5 (3)C11—N1—C12—C1736.5 (4)
C2—C1—C6—C5−3.3 (4)N2—N1—C12—C17−149.9 (2)
C2—C1—C6—C7179.3 (3)C11—N1—C12—C13−145.0 (2)
Ni1—O1—C7—C83.6 (3)N2—N1—C12—C1328.7 (3)
Ni1—O1—C7—C6−178.18 (14)C17—C12—C13—C140.8 (4)
C5—C6—C7—O1−126.5 (2)N1—C12—C13—C14−177.7 (2)
C1—C6—C7—O150.9 (3)C12—C13—C14—C15−0.4 (4)
C5—C6—C7—C851.8 (3)C13—C14—C15—C16−0.3 (5)
C1—C6—C7—C8−130.8 (3)C14—C15—C16—C170.6 (5)
O1—C7—C8—C1115.7 (4)C15—C16—C17—C12−0.2 (5)
C6—C7—C8—C11−162.5 (2)C13—C12—C17—C16−0.5 (4)
O1—C7—C8—C9−163.6 (2)N1—C12—C17—C16178.0 (3)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···N2ii0.852.002.795 (2)156

Symmetry codes: (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2312).

References

  • Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411. [PubMed]
  • Li, J.-Z., Jiang, L. & An, Y.-M. (2004). Chin. J. Appl. Chem.21, 150–153.
  • Li, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem.14, 98–100.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, J. G., Deng, R. W. & Chen, Z. N. (1993). Transition Met. Chem.18, 23–26.
  • Yu, S. Y. , Wang, S. X., Luo, Q. H., Wang, L. F, Peng, Z. R. & Gao, X. (1993). Polyhedron, 12, 1093–1096.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography