PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1389–m1390.
Published online 2010 October 13. doi:  10.1107/S1600536810039851
PMCID: PMC3008992

Tris(2,4-dimethyl­benzene­thiol­ato)phenyl­tin(IV)

Abstract

In the title compound, [Sn(C6H5)(C8H9S)3], the Sn atom has an approximately tetra­hedral SNCS3 geometry, with angles at this atom ranging from 105.13 (3) to 113.54 (9)°. The crystal packing does not involve any significant inter­molecular inter­actions, although the benzene rings are involved in a number of weak intra- and inter­molecular C—H(...)π inter­actions.

Related literature

For background to the development of synthetic methods for highly substituted thio­phenols with varying degrees of steric hindrance, see: Lloyd-Jones et al. (2008 [triangle]); Fleischer (2005 [triangle]); Huber et al. (1997 [triangle]); Estudiante-Negrete et al. (2007 [triangle]). For the synthesis of phenol derivatives, see: Flores-Figueroa et al. (2005 [triangle]); Mondragón et al. (2010 [triangle]). For similar structures, see: Huber et al. (1997 [triangle]); Li et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1389-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)(C8H9S)3]
  • M r = 607.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1389-efi1.jpg
  • a = 9.2717 (7) Å
  • b = 10.6370 (8) Å
  • c = 15.6486 (11) Å
  • α = 93.420 (2)°
  • β = 93.520 (1)°
  • γ = 105.800 (1)°
  • V = 1477.51 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 298 K
  • 0.32 × 0.26 × 0.04 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a [triangle]) T min = 0.705, T max = 0.958
  • 12493 measured reflections
  • 5416 independent reflections
  • 4057 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.061
  • S = 0.86
  • 5416 reflections
  • 313 parameters
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039851/fj2342sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039851/fj2342Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Instituto Rcxaslan-CSIC, Spain for a license to use the Cambridge Structural Database (Allen, 2002 [triangle]).

supplementary crystallographic information

Comment

The development of synthetic methods for highly substituted thiophenols with varying degrees of steric hindrance has been an active field of research (Lloyd-Jones et al., 2008), due in part to the potential of sterically encumbered thiophenols to emulate the active site of sulfur-rich metalloenzymes (Fleischer, 2005). In this context, we developed a series of 2,4-disubstituted thiophenols (Flores-Figueroa et al., 2005, Mondragón et al.,2010), among which 2,4-dimethylthiophenol represents a commercially available ligand. In order to assess the steric properties of this thiophenol, we soughtout to prepare a metal-thiolate derivative amenable to structural characterization. Since phenyl- and diphenyltin (IV) derivatives tend to be crystalline materials (Huber et al., 1997 & Estudiante-Negrete et al., 2007), we decided to employ PhSnCl3 to introduce the 2,4-dimethylthiophenolate moiety. Thus, the reaction of 3 equivalents of 2,4-Me2C6H3SH with PhSnCl3 in the presence of 3 equivalents of triethylamine afforded the title compound phenyl tris(2,4-dimethylphenylthiolate)tin (IV) (I) in good yield.

The structure of the title compound (PhSn(S-2,4-Me2C6H3)3,) is shown with numbering scheme in Figure 1. According to the bond angles, (I) exhibits a slightly distorted tetrahedral geometry. The phenyl ring (C1—C6) is in a close to coplanar disposition with respect to one of the 2,4-dimethylphenyl groups (C23–C30), forming a dihedral angle of 25.3 (2)°. The Sn—C distance (2.114 (3) Å) is slightly shorter than those described for the related compounds (Allen et al., 1987) phenyl tris(pyridinthiolate)tin [2.139 (5) Å, PhSn(SPy)3 (Huber et al., 1997)] and phenyl tris(pyrimidinethiolato)tin [2.139 (3) Å, PhSn(SPym)3 (Li et al., 2006)]. The Sn—S distances are shorter than those in PhSn(SPy)3 [2.491–2.576 Å], and PhSn(SPym)3[2.455–2.552 Å]. Due to the geometry adopted, in the crystal structure, there are C—H-π, intra and intermolecular interactions.

Experimental

To a tetrahydrofuran solution of 2,4-dimethylthiophenol (0.50 g, 3.70 mmol) was added triethylamine (0.65 ml, 4.07 mmol) under an atmosphere of N2. After stirring for 1 h, PhSnCl3 (0.20 mL, 1.23 mmol) was added via syringe, and the mixture was stirred overnight. The volatile materials were evaporated under reduced pressure, and the solid was extracted with hexane (2 x 15 ml), and X-ray quality crystals were obtained by slow evaporation of the solution. Yield: 0.48 g (64%); m.p. 320–323 K; IR (KBr, cm-1) 3056, 3012, 2916, 2859, 2728, 1898, 1753, 1598, 1471, 1434, 1373, 1266,1229, 1162, 1138, 1069, 1042, 876, 811, 728, 695, 620, 543, 443, 372, 299; 1H NMR (300 MHz, CDCl3, TMS internal reference δ p.p.m.)7.20 (2H, m, Ph) 7.11 (3H, d,ArH), 7.08 (1H, s, Ph), 6.95 (2H, d, Ph), 6.85 (3H, s, ArH), 6.69 (3H, d,ArH), 2.18 (18H, s, ArMe); 13C NMR (75 MHz, CDCl3, TMS internal reference, δ p.p.m.)142.29, 139.48, 137.62, 136. 60, 135.17, 131.58, 130.44, 128.69, 127.32,123.88, 22.19, 21.03.

Refinement

H atoms were included in calculated positions (C—H = 0.93Å arom, and 0.96 Å CH3), and refined using a riding model, with Uĩso~(H) = 1.2Ueq and 1.5 Ueq respectively of the carrier atom.

Figures

Fig. 1.
The molecular structure of PhSn(SMe2Ph)3 with numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Only the H atoms involved in C—H-π and S-π interactions are shown.

Crystal data

[Sn(C6H5)(C8H9S)3]Z = 2
Mr = 607.43F(000) = 620
Triclinic, P1Dx = 1.365 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2717 (7) ÅCell parameters from 6072 reflections
b = 10.6370 (8) Åθ = 2.3–25.4°
c = 15.6486 (11) ŵ = 1.09 mm1
α = 93.420 (2)°T = 298 K
β = 93.520 (1)°Prism-lamina, colourless
γ = 105.800 (1)°0.32 × 0.26 × 0.04 mm
V = 1477.51 (19) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer5416 independent reflections
Radiation source: fine-focus sealed tube4057 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 1.3°
ω scansh = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a)k = −12→12
Tmin = 0.705, Tmax = 0.958l = −18→18
12493 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 0.86w = 1/[σ2(Fo2) + (0.021P)2] where P = (Fo2 + 2Fc2)/3
5416 reflections(Δ/σ)max = 0.002
313 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn0.76585 (2)0.68776 (2)0.732737 (14)0.04856 (8)
S10.79793 (10)0.74342 (8)0.88495 (5)0.0604 (2)
S20.76443 (10)0.46303 (9)0.70323 (6)0.0713 (3)
S30.97179 (9)0.83866 (9)0.67586 (6)0.0649 (3)
C10.5620 (3)0.7073 (3)0.6745 (2)0.0493 (8)
C20.4930 (4)0.7944 (3)0.7097 (2)0.0613 (9)
H20.53310.84140.76170.074*
C30.3652 (4)0.8137 (4)0.6695 (3)0.0784 (11)
H30.31880.87210.69490.094*
C40.3072 (4)0.7475 (4)0.5931 (3)0.0784 (12)
H40.22110.76070.56590.094*
C50.3745 (4)0.6615 (4)0.5557 (2)0.0799 (12)
H50.33550.61720.50270.096*
C60.5015 (4)0.6405 (4)0.5974 (2)0.0698 (10)
H60.54600.58030.57260.084*
C70.9858 (3)0.8485 (3)0.88924 (18)0.0480 (8)
C81.0125 (4)0.9837 (3)0.88760 (18)0.0503 (8)
C91.1612 (4)1.0570 (3)0.89292 (19)0.0615 (9)
H91.18111.14750.89250.074*
C101.2818 (4)1.0050 (4)0.8988 (2)0.0627 (9)
C111.2497 (4)0.8703 (4)0.8994 (2)0.0652 (10)
H111.32810.83130.90290.078*
C121.1045 (4)0.7937 (3)0.89512 (19)0.0558 (9)
H121.08550.70340.89610.067*
C130.8877 (4)1.0482 (3)0.8784 (2)0.0729 (10)
H13A0.82031.00710.82940.109*
H13B0.92921.13950.87070.109*
H13C0.83381.03920.92920.109*
C141.4406 (4)1.0917 (4)0.9042 (3)0.1016 (14)
H14A1.45841.13360.85170.152*
H14B1.50941.03980.91310.152*
H14C1.45531.15720.95130.152*
C150.9354 (3)0.4663 (3)0.7653 (2)0.0525 (8)
C160.9311 (3)0.4193 (3)0.8463 (2)0.0519 (8)
C171.0672 (4)0.4228 (3)0.8900 (2)0.0564 (9)
H171.06610.39200.94440.068*
C181.2041 (4)0.4697 (3)0.8564 (2)0.0584 (9)
C191.2029 (4)0.5147 (3)0.7760 (2)0.0673 (10)
H191.29350.54690.75170.081*
C201.0702 (4)0.5132 (3)0.7307 (2)0.0645 (9)
H201.07200.54410.67630.077*
C210.7866 (4)0.3664 (3)0.8865 (2)0.0773 (11)
H21A0.73550.43340.89220.116*
H21B0.80740.33910.94220.116*
H21C0.72400.29280.85080.116*
C221.3519 (4)0.4742 (4)0.9061 (2)0.0858 (12)
H22A1.41860.45060.86760.129*
H22B1.33320.41370.95000.129*
H22C1.39700.56130.93220.129*
C230.8789 (3)0.8297 (3)0.5717 (2)0.0579 (9)
C240.8116 (4)0.9252 (3)0.5474 (2)0.0661 (10)
C250.7413 (5)0.9110 (4)0.4651 (3)0.0882 (13)
H250.69510.97410.44850.106*
C260.7372 (5)0.8077 (5)0.4068 (3)0.0920 (14)
C270.8052 (5)0.7156 (4)0.4322 (3)0.0902 (13)
H270.80370.64470.39410.108*
C280.8759 (4)0.7266 (4)0.5136 (2)0.0759 (11)
H280.92230.66320.52940.091*
C290.8112 (5)1.0413 (4)0.6079 (3)0.0950 (13)
H29A0.75191.01140.65470.143*
H29B0.76901.10050.57760.143*
H29C0.91241.08570.62990.143*
C300.6584 (6)0.7974 (5)0.3179 (3)0.146 (2)
H30A0.58600.84710.31880.219*
H30B0.60810.70720.30060.219*
H30C0.73100.83150.27800.219*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn0.04127 (13)0.05660 (15)0.04794 (14)0.01525 (11)−0.00392 (9)0.00492 (10)
S10.0608 (6)0.0633 (6)0.0494 (5)0.0041 (5)0.0036 (4)0.0058 (4)
S20.0706 (6)0.0607 (6)0.0782 (7)0.0212 (5)−0.0255 (5)−0.0114 (5)
S30.0442 (5)0.0874 (7)0.0578 (6)0.0085 (5)0.0002 (4)0.0123 (5)
C10.0378 (18)0.057 (2)0.053 (2)0.0136 (16)0.0015 (15)0.0104 (17)
C20.050 (2)0.066 (2)0.069 (2)0.0185 (19)−0.0010 (18)0.0057 (19)
C30.060 (3)0.080 (3)0.104 (3)0.036 (2)0.005 (2)0.009 (2)
C40.048 (2)0.098 (3)0.094 (3)0.026 (2)−0.006 (2)0.034 (3)
C50.058 (2)0.112 (3)0.063 (3)0.021 (2)−0.0156 (19)−0.003 (2)
C60.050 (2)0.089 (3)0.074 (3)0.029 (2)−0.0029 (19)−0.008 (2)
C70.057 (2)0.047 (2)0.0360 (18)0.0095 (17)−0.0030 (15)−0.0001 (14)
C80.062 (2)0.049 (2)0.0385 (18)0.0144 (18)−0.0052 (15)0.0018 (15)
C90.081 (3)0.046 (2)0.048 (2)0.005 (2)−0.0101 (18)0.0026 (16)
C100.057 (2)0.073 (3)0.050 (2)0.005 (2)−0.0043 (17)0.0099 (19)
C110.062 (2)0.083 (3)0.054 (2)0.028 (2)−0.0076 (17)0.0047 (19)
C120.066 (2)0.052 (2)0.049 (2)0.017 (2)−0.0063 (17)0.0040 (16)
C130.087 (3)0.061 (2)0.074 (3)0.031 (2)−0.008 (2)0.0000 (19)
C140.069 (3)0.115 (3)0.098 (3)−0.014 (3)−0.015 (2)0.027 (3)
C150.054 (2)0.0442 (19)0.060 (2)0.0171 (17)−0.0060 (17)−0.0017 (16)
C160.051 (2)0.0379 (18)0.067 (2)0.0131 (16)0.0047 (17)0.0106 (16)
C170.059 (2)0.047 (2)0.065 (2)0.0169 (18)0.0013 (18)0.0151 (17)
C180.053 (2)0.047 (2)0.077 (3)0.0186 (18)−0.0001 (19)0.0082 (18)
C190.052 (2)0.066 (2)0.090 (3)0.0209 (19)0.020 (2)0.018 (2)
C200.074 (3)0.069 (2)0.060 (2)0.030 (2)0.014 (2)0.0170 (18)
C210.061 (2)0.068 (2)0.103 (3)0.013 (2)0.011 (2)0.029 (2)
C220.059 (2)0.087 (3)0.113 (3)0.027 (2)−0.013 (2)0.010 (2)
C230.052 (2)0.068 (2)0.050 (2)0.0091 (19)0.0078 (16)0.0087 (19)
C240.075 (3)0.062 (2)0.054 (2)0.005 (2)0.0029 (19)0.0147 (19)
C250.106 (3)0.079 (3)0.075 (3)0.018 (3)−0.007 (3)0.027 (2)
C260.113 (4)0.091 (3)0.055 (3)0.002 (3)−0.007 (2)0.015 (3)
C270.116 (4)0.089 (3)0.058 (3)0.020 (3)0.007 (2)−0.008 (2)
C280.074 (3)0.090 (3)0.066 (3)0.025 (2)0.009 (2)0.006 (2)
C290.125 (4)0.072 (3)0.092 (3)0.031 (3)0.005 (3)0.015 (2)
C300.197 (6)0.145 (5)0.072 (3)0.017 (4)−0.044 (3)0.016 (3)

Geometric parameters (Å, °)

Sn—C12.114 (3)C15—C201.371 (4)
Sn—S32.3927 (9)C15—C161.390 (4)
Sn—S12.4002 (9)C16—C171.388 (4)
Sn—S22.4037 (9)C16—C211.498 (4)
S1—C71.790 (3)C17—C181.380 (4)
S2—C151.798 (3)C17—H170.9300
S3—C231.782 (3)C18—C191.373 (4)
C1—C61.368 (4)C18—C221.521 (4)
C1—C21.370 (4)C19—C201.378 (4)
C2—C31.378 (4)C19—H190.9300
C2—H20.9300C20—H200.9300
C3—C41.353 (5)C21—H21A0.9600
C3—H30.9300C21—H21B0.9600
C4—C51.363 (5)C21—H21C0.9600
C4—H40.9300C22—H22A0.9600
C5—C61.389 (4)C22—H22B0.9600
C5—H50.9300C22—H22C0.9600
C6—H60.9300C23—C281.375 (4)
C7—C121.379 (4)C23—C241.388 (4)
C7—C81.394 (4)C24—C251.388 (5)
C8—C91.381 (4)C24—C291.512 (5)
C8—C131.501 (4)C25—C261.376 (5)
C9—C101.377 (4)C25—H250.9300
C9—H90.9300C26—C271.365 (5)
C10—C111.382 (4)C26—C301.516 (5)
C10—C141.504 (4)C27—C281.380 (5)
C11—C121.365 (4)C27—H270.9300
C11—H110.9300C28—H280.9300
C12—H120.9300C29—H29A0.9600
C13—H13A0.9600C29—H29B0.9600
C13—H13B0.9600C29—H29C0.9600
C13—H13C0.9600C30—H30A0.9600
C14—H14A0.9600C30—H30B0.9600
C14—H14B0.9600C30—H30C0.9600
C14—H14C0.9600
C1—Sn—S3108.97 (8)C16—C15—S2120.6 (3)
C1—Sn—S1113.54 (9)C17—C16—C15117.5 (3)
S3—Sn—S1105.13 (3)C17—C16—C21120.3 (3)
C1—Sn—S2106.68 (9)C15—C16—C21122.2 (3)
S3—Sn—S2112.83 (4)C18—C17—C16123.1 (3)
S1—Sn—S2109.83 (3)C18—C17—H17118.5
C7—S1—Sn97.37 (10)C16—C17—H17118.5
C15—S2—Sn98.83 (10)C19—C18—C17117.4 (3)
C23—S3—Sn95.05 (11)C19—C18—C22120.6 (3)
C6—C1—C2118.1 (3)C17—C18—C22122.0 (3)
C6—C1—Sn120.8 (2)C18—C19—C20121.3 (3)
C2—C1—Sn120.9 (2)C18—C19—H19119.4
C1—C2—C3121.3 (3)C20—C19—H19119.4
C1—C2—H2119.3C15—C20—C19120.4 (3)
C3—C2—H2119.3C15—C20—H20119.8
C4—C3—C2119.8 (4)C19—C20—H20119.8
C4—C3—H3120.1C16—C21—H21A109.5
C2—C3—H3120.1C16—C21—H21B109.5
C3—C4—C5120.3 (3)H21A—C21—H21B109.5
C3—C4—H4119.8C16—C21—H21C109.5
C5—C4—H4119.8H21A—C21—H21C109.5
C4—C5—C6119.6 (4)H21B—C21—H21C109.5
C4—C5—H5120.2C18—C22—H22A109.5
C6—C5—H5120.2C18—C22—H22B109.5
C1—C6—C5120.8 (3)H22A—C22—H22B109.5
C1—C6—H6119.6C18—C22—H22C109.5
C5—C6—H6119.6H22A—C22—H22C109.5
C12—C7—C8120.2 (3)H22B—C22—H22C109.5
C12—C7—S1119.0 (2)C28—C23—C24119.4 (3)
C8—C7—S1120.8 (3)C28—C23—S3119.0 (3)
C9—C8—C7116.6 (3)C24—C23—S3121.6 (3)
C9—C8—C13120.8 (3)C23—C24—C25118.1 (4)
C7—C8—C13122.5 (3)C23—C24—C29122.1 (3)
C10—C9—C8124.3 (3)C25—C24—C29119.8 (4)
C10—C9—H9117.8C26—C25—C24122.8 (4)
C8—C9—H9117.8C26—C25—H25118.6
C9—C10—C11116.9 (3)C24—C25—H25118.6
C9—C10—C14121.0 (4)C27—C26—C25117.9 (4)
C11—C10—C14122.0 (4)C27—C26—C30121.8 (5)
C12—C11—C10120.9 (3)C25—C26—C30120.4 (5)
C12—C11—H11119.5C26—C27—C28120.9 (4)
C10—C11—H11119.5C26—C27—H27119.6
C11—C12—C7121.0 (3)C28—C27—H27119.6
C11—C12—H12119.5C23—C28—C27121.0 (4)
C7—C12—H12119.5C23—C28—H28119.5
C8—C13—H13A109.5C27—C28—H28119.5
C8—C13—H13B109.5C24—C29—H29A109.5
H13A—C13—H13B109.5C24—C29—H29B109.5
C8—C13—H13C109.5H29A—C29—H29B109.5
H13A—C13—H13C109.5C24—C29—H29C109.5
H13B—C13—H13C109.5H29A—C29—H29C109.5
C10—C14—H14A109.5H29B—C29—H29C109.5
C10—C14—H14B109.5C26—C30—H30A109.5
H14A—C14—H14B109.5C26—C30—H30B109.5
C10—C14—H14C109.5H30A—C30—H30B109.5
H14A—C14—H14C109.5C26—C30—H30C109.5
H14B—C14—H14C109.5H30A—C30—H30C109.5
C20—C15—C16120.3 (3)H30B—C30—H30C109.5
C20—C15—S2119.0 (3)
C1—Sn—S1—C7−131.63 (14)C14—C10—C11—C12179.5 (3)
S3—Sn—S1—C7−12.61 (11)C10—C11—C12—C70.6 (5)
S2—Sn—S1—C7109.04 (11)C8—C7—C12—C110.0 (5)
C1—Sn—S2—C15−175.21 (14)S1—C7—C12—C11−179.3 (2)
S3—Sn—S2—C1565.16 (12)Sn—S2—C15—C20−81.6 (3)
S1—Sn—S2—C15−51.77 (12)Sn—S2—C15—C1699.9 (2)
C1—Sn—S3—C23−32.90 (16)C20—C15—C16—C170.4 (5)
S1—Sn—S3—C23−154.93 (13)S2—C15—C16—C17178.9 (2)
S2—Sn—S3—C2385.39 (13)C20—C15—C16—C21−179.6 (3)
S3—Sn—C1—C685.5 (3)S2—C15—C16—C21−1.1 (4)
S1—Sn—C1—C6−157.8 (2)C15—C16—C17—C18−0.3 (5)
S2—Sn—C1—C6−36.6 (3)C21—C16—C17—C18179.7 (3)
S3—Sn—C1—C2−89.7 (3)C16—C17—C18—C190.1 (5)
S1—Sn—C1—C227.1 (3)C16—C17—C18—C22179.1 (3)
S2—Sn—C1—C2148.2 (2)C17—C18—C19—C200.0 (5)
C6—C1—C2—C30.7 (5)C22—C18—C19—C20−179.0 (3)
Sn—C1—C2—C3176.0 (3)C16—C15—C20—C19−0.3 (5)
C1—C2—C3—C4−1.1 (6)S2—C15—C20—C19−178.8 (3)
C2—C3—C4—C50.2 (6)C18—C19—C20—C150.1 (5)
C3—C4—C5—C61.1 (6)Sn—S3—C23—C28−81.4 (3)
C2—C1—C6—C50.6 (5)Sn—S3—C23—C2499.6 (3)
Sn—C1—C6—C5−174.6 (3)C28—C23—C24—C251.0 (5)
C4—C5—C6—C1−1.6 (6)S3—C23—C24—C25−179.9 (3)
Sn—S1—C7—C12−85.7 (2)C28—C23—C24—C29−179.8 (3)
Sn—S1—C7—C895.0 (2)S3—C23—C24—C29−0.8 (5)
C12—C7—C8—C9−0.6 (4)C23—C24—C25—C26−0.7 (6)
S1—C7—C8—C9178.7 (2)C29—C24—C25—C26−179.8 (4)
C12—C7—C8—C13178.0 (3)C24—C25—C26—C270.3 (7)
S1—C7—C8—C13−2.7 (4)C24—C25—C26—C30179.9 (4)
C7—C8—C9—C100.6 (5)C25—C26—C27—C28−0.2 (7)
C13—C8—C9—C10−178.0 (3)C30—C26—C27—C28−179.8 (4)
C8—C9—C10—C11−0.1 (5)C24—C23—C28—C27−1.0 (5)
C8—C9—C10—C14179.9 (3)S3—C23—C28—C27179.9 (3)
C9—C10—C11—C12−0.6 (5)C26—C27—C28—C230.6 (6)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C15–C20 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg10.932.723.557 (3)149
C13—H13C···Cg2i0.962.753.579 (3)144

Symmetry codes: (i) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2342).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2007). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Estudiante-Negrete, F., Redón, R., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 1651–1660.
  • Fleischer, H. (2005). Coord. Chem. Rev.249, 799–827.
  • Flores-Figueroa, A., Arista-M, V., Talancón-Sánchez, D. & Castillo, I. (2005). J. Braz. Chem. Soc 16, 397–403.
  • Huber, F., Schmiedgen, R., Schurmann, M., Barbieri, R., Ruisi, G. & Silvestri, A. (1997). Appl. Organomet. Chem.11, 869–888.
  • Li, Y.-X., Zhang, R.-F. & Ma, C.-L. (2006). Acta Cryst. E62, m957–m958.
  • Lloyd-Jones, G. C., Moseley, J. D. & Renny, J. S. (2008). Synthesis, pp. 661–689.
  • Mondragón, A., Monsalvo, I., Regla, I. & Castillo, I. (2010). Tetrahedron Lett.51, 767–770.
  • Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography