PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2725.
Published online 2010 October 9. doi:  10.1107/S1600536810039073
PMCID: PMC3008990

N-Morpholino-Δ8-dihydro­abietamide

Abstract

The title compound, C24H39NO2 (systematic name: 4-{[1,4a-dimethyl-7-(propan-2-yl)-1,2,3,4,4a,5,6,7,8,9,10,10a-dodeca­hydro­phenanthren-1-yl]carbon­yl}morpholine), has been synthesized from Δ8-dihydro­abietic acid. Two cyclo­hexene rings adopt half-chair conformations, whereas the cyclo­hexane and morpholine rings are each in the chair conformation. Two methyl groups are in an axial position with respect to the tricyclic hydro­phenanthrene nuclei.

Related literature

For literature on Δ8-dihydro­abietic acid, see: Rao et al. (2009 [triangle]). For the biological activity of rosin acid derivatives, see Fonseca et al. (2004 [triangle]); Sepulveda et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2725-scheme1.jpg

Experimental

Crystal data

  • C24H39NO2
  • M r = 373.56
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2725-efi1.jpg
  • a = 7.8683 (16) Å
  • b = 11.036 (2) Å
  • c = 24.726 (5) Å
  • V = 2147.1 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.42 × 0.34 × 0.25 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.352, T max = 0.497
  • 16937 measured reflections
  • 2186 independent reflections
  • 1957 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.117
  • S = 1.37
  • 2186 reflections
  • 248 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810039073/kp2277sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039073/kp2277Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by grants from the Fundamental Foundation (grant No. CAFYBB2008021) and the Natural Science Foundation of Jiangsu Province (grant No. BK2008088).

supplementary crystallographic information

Comment

Δ8-Dihydroabietic acid is one of the main component of hydrogenated rosin. It is more stable to air oxidation than abietic acid (Rao et al., 2009). Rosin acid derivatives exhibit wide range of biological activities, such as antifungal and antitumor (Fonseca et al., 2004), nitrogen derivatives of rosin acid have been studied as gastroprotective and cytotoxic reagents and they are found to have high activity in reducing blood serum cholesterol levels in animals (Sepulveda et al., 2005). In this work, we describe the crystal structure of the title compound.

Two cyclohexene rings adopt a half-chair conformations, and the cyclohexane and morpholine rings are in the chair conformation. Two methyl groups are in an axial position of the tricyclic hydrophenanthrene nuclei. The absolute configuration cannot be assigned on a basis of the value of the Flack parameter due to its high deviation. The Friedel opposite reflections were not measured.

Experimental

A mixture of Δ8-dihydroabietic acid (0.1 mol), trichloro phosphorous (6 ml) and chloroform (40 ml) was stirred at 333 K for 3 h, after distilled off the solvent, the residue was added to the morpholine (0.2 mol) in toluene (60 ml) solution, the mixture was reacted for 24 h at room temperature, then the solvent was distilled off, upon recrystallization from acetone, white crystals of the title compound were obtained (yield 40%, m.p.394 K). Single crystals were grown from acetone.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.
Molecular structure of the title compound, with H atoms represented by small spheres of arbitrary radius and displacement ellipsoids at the 30% probability level.

Crystal data

C24H39NO2F(000) = 824
Mr = 373.56Dx = 1.156 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 16603 reflections
a = 7.8683 (16) Åθ = 3.1–27.4°
b = 11.036 (2) ŵ = 0.07 mm1
c = 24.726 (5) ÅT = 293 K
V = 2147.1 (7) Å3Block, colorless
Z = 40.42 × 0.34 × 0.25 mm

Data collection

Rigaku R-AXIS RAPID diffractometer2186 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
graphiteRint = 0.029
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −13→13
Tmin = 0.352, Tmax = 0.497l = −29→29
16937 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.117w = 1/[σ2(Fo2) + (0.0672P)2] where P = (Fo2 + 2Fc2)/3
S = 1.37(Δ/σ)max < 0.001
2186 reflectionsΔρmax = 0.23 e Å3
248 parametersΔρmin = −0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), ??? Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.1743 (3)0.85945 (18)0.01582 (7)0.0661 (6)
O20.9634 (2)0.83691 (14)0.19288 (7)0.0528 (5)
N11.0754 (3)0.75942 (19)0.11701 (8)0.0523 (6)
C11.1939 (4)0.8606 (3)0.11335 (10)0.0577 (7)
H1A1.30950.83010.11320.069*
H1B1.18050.91260.14470.069*
C21.1629 (4)0.9328 (3)0.06276 (10)0.0627 (8)
H2A1.05080.96930.06450.075*
H2B1.24580.99770.06050.075*
C31.0545 (4)0.7641 (3)0.01898 (10)0.0586 (7)
H3A1.06280.7147−0.01340.070*
H3B0.94090.79810.02030.070*
C41.0817 (4)0.6852 (2)0.06789 (9)0.0501 (6)
H4A0.99440.62330.06940.060*
H4B1.19130.64530.06540.060*
C50.9656 (3)0.75310 (19)0.16034 (9)0.0404 (5)
C60.9513 (3)0.52216 (19)0.16245 (10)0.0467 (6)
H6A1.05930.53900.14600.070*
H6B0.88980.46550.14040.070*
H6C0.96880.48820.19780.070*
C70.6449 (4)0.4303 (2)0.23662 (10)0.0492 (6)
H7A0.74480.41750.25820.074*
H7B0.66430.40040.20070.074*
H7C0.55080.38790.25250.074*
C80.8477 (3)0.64162 (18)0.16745 (8)0.0371 (5)
C90.7048 (3)0.6567 (2)0.12412 (9)0.0467 (6)
H9A0.66550.74000.12460.056*
H9B0.75260.64100.08860.056*
C100.5535 (3)0.5732 (2)0.13276 (10)0.0509 (6)
H10A0.46850.58950.10530.061*
H10B0.58990.48980.12870.061*
C110.4745 (3)0.5901 (2)0.18848 (9)0.0478 (6)
H11A0.38010.53430.19260.057*
H11B0.43020.67180.19150.057*
C120.6045 (3)0.56781 (19)0.23426 (9)0.0373 (5)
C130.7604 (3)0.65211 (18)0.22398 (8)0.0344 (5)
H13A0.71400.73450.22500.041*
C140.8810 (3)0.6454 (2)0.27262 (9)0.0391 (5)
H14A0.91050.56160.27990.047*
H14B0.98470.68950.26480.047*
C150.7940 (3)0.7000 (2)0.32151 (9)0.0448 (6)
H15A0.79830.78760.31870.054*
H15B0.85620.67680.35380.054*
C160.6101 (3)0.66108 (19)0.32775 (9)0.0376 (5)
C170.5253 (3)0.60145 (18)0.28917 (9)0.0381 (5)
C180.5310 (3)0.6973 (2)0.38098 (9)0.0456 (6)
H18A0.55290.78280.38690.055*
H18B0.58750.65300.40970.055*
C190.3437 (3)0.5623 (3)0.29822 (11)0.0539 (6)
H19A0.32750.48240.28260.065*
H19B0.26850.61790.27960.065*
C200.2957 (4)0.5583 (3)0.35748 (11)0.0563 (7)
H20A0.17460.54350.36080.068*
H20B0.35510.49190.37490.068*
C210.3398 (3)0.6757 (2)0.38580 (10)0.0458 (6)
H21A0.28470.74040.36510.055*
C220.2693 (4)0.6842 (2)0.44366 (10)0.0553 (7)
H22A0.14540.67850.44060.066*
C230.3069 (5)0.8059 (3)0.46971 (13)0.0773 (10)
H23A0.25790.80820.50520.116*
H23B0.25900.86950.44800.116*
H23C0.42770.81700.47230.116*
C240.3247 (5)0.5812 (3)0.48076 (12)0.0782 (9)
H24A0.44570.58420.48570.117*
H24B0.29380.50500.46480.117*
H24C0.26950.58940.51520.117*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0850 (15)0.0717 (11)0.0416 (9)−0.0148 (11)0.0137 (10)0.0019 (9)
O20.0659 (12)0.0420 (8)0.0504 (9)−0.0102 (8)0.0087 (9)−0.0097 (8)
N10.0661 (14)0.0536 (11)0.0370 (10)−0.0205 (11)0.0084 (10)−0.0062 (9)
C10.0629 (17)0.0646 (15)0.0457 (13)−0.0236 (14)0.0031 (13)−0.0030 (13)
C20.078 (2)0.0529 (13)0.0566 (16)−0.0142 (14)0.0135 (16)−0.0022 (13)
C30.0667 (17)0.0687 (16)0.0403 (13)−0.0044 (14)0.0025 (13)−0.0082 (12)
C40.0550 (15)0.0503 (13)0.0448 (13)−0.0032 (11)0.0071 (12)−0.0088 (11)
C50.0461 (13)0.0393 (10)0.0357 (11)−0.0004 (10)−0.0029 (10)0.0020 (10)
C60.0499 (14)0.0411 (11)0.0490 (13)0.0025 (10)0.0043 (12)−0.0013 (11)
C70.0593 (16)0.0358 (11)0.0525 (14)−0.0042 (11)0.0030 (13)−0.0037 (10)
C80.0419 (12)0.0346 (10)0.0348 (11)−0.0007 (9)−0.0026 (9)0.0002 (9)
C90.0538 (14)0.0511 (13)0.0352 (11)−0.0002 (12)−0.0066 (11)−0.0010 (11)
C100.0480 (15)0.0608 (14)0.0440 (12)−0.0039 (12)−0.0159 (11)−0.0033 (12)
C110.0412 (13)0.0555 (13)0.0466 (13)−0.0047 (11)−0.0083 (11)−0.0049 (11)
C120.0360 (12)0.0359 (10)0.0400 (11)−0.0019 (9)−0.0018 (10)−0.0025 (9)
C130.0349 (11)0.0329 (9)0.0355 (11)0.0024 (9)−0.0037 (8)0.0009 (9)
C140.0330 (11)0.0451 (11)0.0392 (12)0.0017 (10)−0.0043 (9)0.0036 (10)
C150.0401 (13)0.0548 (13)0.0396 (12)−0.0050 (10)−0.0048 (10)−0.0014 (11)
C160.0381 (12)0.0364 (10)0.0385 (11)0.0008 (9)−0.0006 (9)0.0001 (9)
C170.0358 (12)0.0379 (10)0.0406 (11)−0.0020 (9)−0.0004 (10)0.0000 (10)
C180.0514 (14)0.0454 (11)0.0401 (12)0.0020 (10)0.0006 (11)−0.0022 (11)
C190.0433 (14)0.0643 (14)0.0541 (15)−0.0108 (12)0.0053 (12)−0.0092 (13)
C200.0472 (15)0.0633 (15)0.0585 (15)−0.0120 (13)0.0121 (13)−0.0016 (13)
C210.0469 (13)0.0437 (12)0.0469 (13)0.0016 (10)0.0056 (11)0.0054 (11)
C220.0543 (16)0.0597 (15)0.0520 (14)0.0023 (12)0.0118 (13)0.0056 (12)
C230.100 (3)0.0742 (19)0.0581 (17)0.0018 (18)0.0266 (19)−0.0087 (15)
C240.095 (3)0.085 (2)0.0553 (17)0.0004 (19)0.0128 (17)0.0227 (16)

Geometric parameters (Å, °)

O1—C31.415 (3)C11—H11B0.9700
O1—C21.418 (3)C12—C171.539 (3)
O2—C51.226 (3)C12—C131.561 (3)
N1—C51.378 (3)C13—C141.534 (3)
N1—C11.458 (3)C13—H13A0.9800
N1—C41.466 (3)C14—C151.514 (3)
C1—C21.503 (4)C14—H14A0.9700
C1—H1A0.9700C14—H14B0.9700
C1—H1B0.9700C15—C161.517 (3)
C2—H2A0.9700C15—H15A0.9700
C2—H2B0.9700C15—H15B0.9700
C3—C41.505 (3)C16—C171.337 (3)
C3—H3A0.9700C16—C181.510 (3)
C3—H3B0.9700C17—C191.509 (3)
C4—H4A0.9700C18—C211.528 (4)
C4—H4B0.9700C18—H18A0.9700
C5—C81.551 (3)C18—H18B0.9700
C6—C81.555 (3)C19—C201.514 (4)
C6—H6A0.9600C19—H19A0.9700
C6—H6B0.9600C19—H19B0.9700
C6—H6C0.9600C20—C211.513 (4)
C7—C121.552 (3)C20—H20A0.9700
C7—H7A0.9600C20—H20B0.9700
C7—H7B0.9600C21—C221.537 (3)
C7—H7C0.9600C21—H21A0.9800
C8—C91.562 (3)C22—C231.519 (4)
C8—C131.562 (3)C22—C241.524 (4)
C9—C101.520 (3)C22—H22A0.9800
C9—H9A0.9700C23—H23A0.9600
C9—H9B0.9700C23—H23B0.9600
C10—C111.523 (3)C23—H23C0.9600
C10—H10A0.9700C24—H24A0.9600
C10—H10B0.9700C24—H24B0.9600
C11—C121.545 (3)C24—H24C0.9600
C11—H11A0.9700
C3—O1—C2109.73 (19)C17—C12—C13108.54 (17)
C5—N1—C1119.21 (19)C11—C12—C13107.85 (17)
C5—N1—C4129.6 (2)C7—C12—C13115.32 (19)
C1—N1—C4110.79 (19)C14—C13—C12109.26 (17)
N1—C1—C2110.7 (2)C14—C13—C8115.23 (17)
N1—C1—H1A109.5C12—C13—C8116.57 (17)
C2—C1—H1A109.5C14—C13—H13A104.8
N1—C1—H1B109.5C12—C13—H13A104.8
C2—C1—H1B109.5C8—C13—H13A104.8
H1A—C1—H1B108.1C15—C14—C13109.08 (18)
O1—C2—C1111.6 (2)C15—C14—H14A109.9
O1—C2—H2A109.3C13—C14—H14A109.9
C1—C2—H2A109.3C15—C14—H14B109.9
O1—C2—H2B109.3C13—C14—H14B109.9
C1—C2—H2B109.3H14A—C14—H14B108.3
H2A—C2—H2B108.0C14—C15—C16113.57 (19)
O1—C3—C4112.3 (2)C14—C15—H15A108.9
O1—C3—H3A109.1C16—C15—H15A108.9
C4—C3—H3A109.1C14—C15—H15B108.9
O1—C3—H3B109.1C16—C15—H15B108.9
C4—C3—H3B109.1H15A—C15—H15B107.7
H3A—C3—H3B107.9C17—C16—C18123.2 (2)
N1—C4—C3109.75 (19)C17—C16—C15122.8 (2)
N1—C4—H4A109.7C18—C16—C15114.00 (19)
C3—C4—H4A109.7C16—C17—C19120.5 (2)
N1—C4—H4B109.7C16—C17—C12123.1 (2)
C3—C4—H4B109.7C19—C17—C12116.39 (19)
H4A—C4—H4B108.2C16—C18—C21115.6 (2)
O2—C5—N1118.7 (2)C16—C18—H18A108.4
O2—C5—C8121.0 (2)C21—C18—H18A108.4
N1—C5—C8120.22 (19)C16—C18—H18B108.4
C8—C6—H6A109.5C21—C18—H18B108.4
C8—C6—H6B109.5H18A—C18—H18B107.4
H6A—C6—H6B109.5C17—C19—C20112.8 (2)
C8—C6—H6C109.5C17—C19—H19A109.0
H6A—C6—H6C109.5C20—C19—H19A109.0
H6B—C6—H6C109.5C17—C19—H19B109.0
C12—C7—H7A109.5C20—C19—H19B109.0
C12—C7—H7B109.5H19A—C19—H19B107.8
H7A—C7—H7B109.5C21—C20—C19111.5 (2)
C12—C7—H7C109.5C21—C20—H20A109.3
H7A—C7—H7C109.5C19—C20—H20A109.3
H7B—C7—H7C109.5C21—C20—H20B109.3
C5—C8—C6110.49 (18)C19—C20—H20B109.3
C5—C8—C9105.57 (17)H20A—C20—H20B108.0
C6—C8—C9114.40 (18)C20—C21—C18108.9 (2)
C5—C8—C13107.80 (17)C20—C21—C22113.6 (2)
C6—C8—C13111.38 (17)C18—C21—C22114.7 (2)
C9—C8—C13106.83 (18)C20—C21—H21A106.3
C10—C9—C8113.76 (19)C18—C21—H21A106.3
C10—C9—H9A108.8C22—C21—H21A106.3
C8—C9—H9A108.8C23—C22—C24110.4 (2)
C10—C9—H9B108.8C23—C22—C21112.2 (2)
C8—C9—H9B108.8C24—C22—C21114.3 (2)
H9A—C9—H9B107.7C23—C22—H22A106.4
C11—C10—C9111.89 (19)C24—C22—H22A106.4
C11—C10—H10A109.2C21—C22—H22A106.4
C9—C10—H10A109.2C22—C23—H23A109.5
C11—C10—H10B109.2C22—C23—H23B109.5
C9—C10—H10B109.2H23A—C23—H23B109.5
H10A—C10—H10B107.9C22—C23—H23C109.5
C10—C11—C12111.9 (2)H23A—C23—H23C109.5
C10—C11—H11A109.2H23B—C23—H23C109.5
C12—C11—H11A109.2C22—C24—H24A109.5
C10—C11—H11B109.2C22—C24—H24B109.5
C12—C11—H11B109.2H24A—C24—H24B109.5
H11A—C11—H11B107.9C22—C24—H24C109.5
C17—C12—C11109.88 (19)H24A—C24—H24C109.5
C17—C12—C7106.60 (18)H24B—C24—H24C109.5
C11—C12—C7108.60 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2277).

References

  • Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & Clercq, E. C. (2004). Bioorg. Med. Chem.12, 103–112. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rao, X.-P., Song, Z.-Q., Shang, S.-B. & Wu, Y. (2009). Acta Cryst. E65, o2804. [PMC free article] [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res.52, 429–437. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography