PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1364–m1365.
Published online 2010 October 9. doi:  10.1107/S1600536810039255
PMCID: PMC3008988

(Ferrocenyl­thio­phospho­nato-κS)(triphenyl­phosphane-κP)gold(I) dichloro­methane monosolvate

Abstract

In the title compound, [AuFe(C5H5)(C5H5O2PS)(C18H15P)]·CH2Cl2, the two-coordinate gold(I) atom shows a slightly distorted linear arrangement, with a P—Au—S bond angle of 176.81 (6)°. The difference in P=O and P—O(H) bond lengths, which are 1.503 (6) and 1.541 (5) Å, respectively, implies there is apparently no delocalization between the P—O bonds, and the proton appears to be localized on one O atom only. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link dinuclear mol­ecules into chains propagated in the [010] direction. The dichloro­methane solvent mol­ecule was disordered between two positions in a 0.63 (3):0.37 (3) ratio.

Related literature

For information on dithio­phospho­nate complexes of Group 11 metals, see: Van Zyl (2010 [triangle]). For the synthesis of dithio­phospho­nate salt derivatives, see: Van Zyl & Fackler (2000 [triangle]). For gold complexes with thio­phosphoryl-based ligands, see: Crespo et al. (2004 [triangle]). For gold complexes with dithio­phosphate phosphine gold(I) complexes, see: Preisenberger et al. (1998 [triangle]). For the synthesis of ferrocenyl (Fc) dimers of the type [PS2(Fc)]2, see: Foreman et al. (1996 [triangle]). For general background, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1364-scheme1.jpg

Experimental

Crystal data

  • [AuFe(C5H5)(C5H5O2PS)(C18H15P)]·CH2Cl2
  • M r = 825.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1364-efi1.jpg
  • a = 15.122 (3) Å
  • b = 9.3157 (18) Å
  • c = 22.581 (3) Å
  • β = 112.831 (10)°
  • V = 2931.8 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.88 mm−1
  • T = 173 K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.386, T max = 0.453
  • 13808 measured reflections
  • 4924 independent reflections
  • 4348 reflections with I > 2σ(I)
  • R int = 0.112

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.153
  • S = 1.10
  • 4924 reflections
  • 375 parameters
  • 18 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.14 e Å−3
  • Δρmin = −1.63 e Å−3

Data collection: APEX2 (Bruker 2006 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810039255/cv2770sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810039255/cv2770Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Mintek (Project AuTEK), South Africa, for financial support of this work.

supplementary crystallographic information

Comment

The dithiophosphonato dianion salt, (NH4)2[S2P(Fc)OCH2CH2O(Fc)PS2] (Fc = ferrocenyl) was used in this study. It was obtained from the reaction between the dimer [PS2(Fc)]2 (Foreman et al., 1996) and ethanediol, which formed a diacid. The diacid could be readily deprotonated by ammonia gas. The salt was then reacted with [Au(PPh3)Cl] to yield the complex [(PPh3)AuS2(Fc)P(OC2H4O)P(Fc)S2Au(PPh3)] (I). The complex was fully characterized spectroscopically (see Experimental). During work-up for crystal growth, however, the ligand became oxidized, presumably as a result of water present in the solvent dichloromethane. This resulted in substitution of a terminal P═S bond with a P═O bond, a reaction that can readily occur with oxophilic phosphorus(V) in the presence of moisture. Additionally, it resulted in C—O bond cleavage to be replaced with H—O bond formation. A precise mechanism for the reaction is not proposed. The title compound I (see Fig 1) crystalizes in the P21/c space group with molecules lying on general positions in the unit cell. All geometrical data for the compound are within the normal limits (Allen, 2002). In the crystal packing, there is a hydrogen-bonding network along the b axis between the P═ O···H—O—P moieties (see Fig 2 and Table 1).

Experimental

The complex (I) was obtained as an oxidized product. The initial reaction was between the (NH4)2[S2P(Fc)OCH2CH2O(Fc)PS2] salt (Fc = ferrocenyl) (0.122 g, 0.206 mmol) and [Au(PPh3)Cl] (0.200 g, 0.413 mmol) in a THF solution. The NH4Cl was filtered off and the filtrate solvent removed under reduced pressure yielding a yellow colored powder. Yield: 0.127 g (41%). M.p.: 128°C. 1H-NMR (CDCl3) δ: 7.54 – 7.45 (m, 30H, PPh3); 4.65 – 4.22 (d, 4H, Fc); 4.53 – 4.50 (d, 4H, Fc); 4.30 (s, 10H, Fc); 4.36 – 4.31 (t, 2H, CH2); 3.99 – 3.93 (m, 2H, CH2). 31P-NMR δ: 106.14 and 106.03 (d, 2P, P—S); 37.82 (s, 2P, PPh3). ESI-MS: m/z 1539 (95%) for [(PPh3)AuS2(Fc)P(OC2H4O)P(Fc)S2Au(PPh3)].

Refinement

The aromatic H atoms were placed in geometrically idealized positions (C—H = 0.95 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The hydroxyl H was located in a Fourier difference map and refined isotropically. The disorder of the solvent molecule was refined over two positions that adds to unity. The final refinement shows a ratio of 37:63 for the two components. The neccesary bond and Uij restraints were applied to keep the refinement stable.

Figures

Fig. 1.
View of (I) (30% probability displacement ellipsoids). Hydrogen atoms omitted for clarity.
Fig. 2.
Packing diagram of (I) showing the infinite hydrogen bonding interactions (dashed lines) along the b axis. Solvent molecules omitted for clarity.

Crystal data

[AuFe(C5H5)(C5H5O2PS)(C18H15P)]·CH2Cl2F(000) = 1608
Mr = 825.22Dx = 1.87 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9574 reflections
a = 15.122 (3) Åθ = 2.2–27.9°
b = 9.3157 (18) ŵ = 5.88 mm1
c = 22.581 (3) ÅT = 173 K
β = 112.831 (10)°Block, orange-brown
V = 2931.8 (9) Å30.2 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker CCD diffractometer4348 reflections with I > 2σ(I)
graphiteRint = 0.112
[var phi] scansθmax = 25°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −16→17
Tmin = 0.386, Tmax = 0.453k = −11→11
13808 measured reflectionsl = −26→20
4924 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.095P)2] where P = (Fo2 + 2Fc2)/3
4924 reflections(Δ/σ)max = 0.001
375 parametersΔρmax = 2.14 e Å3
18 restraintsΔρmin = −1.63 e Å3

Special details

Experimental. The intensity data was collected on a Bruker CCD based diffractometer equipped with an Oxford Cryostream low-temperature apparatus operating at 173 K diffractometer using an exposure time of 30 s/frame. A total of 1276 frames were collected with a frame width of 0.5° covering up to θ = 28.63% with 86.5% completeness accomplished. Due to decomposition and the weak diffracting nature of the title compound, refinement of data was restricted to θ = 25.0% to reach a completeness of 95.5%.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Au10.227778 (18)0.21410 (3)0.709726 (13)0.04416 (16)
Fe1−0.15433 (8)0.30798 (11)0.60212 (6)0.0463 (3)
S10.17770 (13)0.35983 (19)0.77340 (10)0.0499 (4)
P10.28030 (12)0.08231 (19)0.64580 (9)0.0407 (4)
P20.03846 (15)0.29088 (17)0.74410 (11)0.0443 (5)
O10.0279 (4)0.1480 (6)0.7716 (3)0.0528 (13)
O2−0.0137 (4)0.4034 (6)0.7688 (3)0.0502 (12)
C110.2290 (5)0.1421 (7)0.5625 (3)0.0439 (15)
C120.2703 (5)0.1110 (8)0.5188 (4)0.0515 (17)
H120.33050.06340.53260.062*
C130.2237 (6)0.1493 (8)0.4552 (4)0.0544 (18)
H130.25210.12740.42540.065*
C140.1361 (7)0.2190 (8)0.4340 (5)0.058 (2)
H140.10540.24760.39040.069*
C150.0933 (7)0.2469 (10)0.4779 (4)0.058 (2)
H150.03170.29030.46390.069*
C160.1411 (6)0.2112 (7)0.5408 (4)0.0514 (19)
H160.11320.23440.57070.062*
C210.4100 (5)0.0891 (7)0.6701 (3)0.0435 (15)
C220.4526 (6)0.2000 (8)0.6510 (4)0.0516 (19)
H220.41330.27030.62240.062*
C230.5507 (6)0.2118 (7)0.6723 (5)0.055 (2)
H230.5790.28810.65790.067*
C240.6073 (5)0.1112 (9)0.7150 (4)0.0542 (18)
H240.67510.1180.72950.065*
C250.5671 (5)0.0007 (9)0.7369 (4)0.063 (2)
H250.6069−0.06610.76740.075*
C260.4683 (5)−0.0116 (8)0.7141 (4)0.0522 (17)
H260.44−0.08840.72820.063*
C310.2488 (5)−0.1068 (7)0.6423 (3)0.0428 (15)
C320.2881 (6)−0.2077 (7)0.6148 (4)0.0499 (19)
H320.3353−0.180.5990.06*
C330.2582 (6)−0.3508 (8)0.6105 (4)0.0540 (18)
H330.2868−0.42130.59310.065*
C340.1871 (5)−0.3890 (9)0.6314 (4)0.0559 (19)
H340.1657−0.48580.62740.067*
C350.1471 (6)−0.2889 (8)0.6581 (5)0.058 (2)
H350.0991−0.31670.67320.07*
C360.1766 (5)−0.1480 (8)0.6628 (4)0.0505 (17)
H360.1476−0.07840.68030.061*
C41−0.0125 (5)0.2862 (7)0.6583 (4)0.0452 (18)
C42−0.0462 (5)0.1626 (8)0.6188 (4)0.0476 (17)
H42−0.04480.06690.63360.057*
C43−0.0826 (6)0.2068 (8)0.5530 (4)0.0490 (18)
H43−0.10940.14610.51660.059*
C44−0.0713 (5)0.3575 (8)0.5522 (4)0.0504 (17)
H44−0.08960.41620.51490.061*
C45−0.0278 (5)0.4060 (8)0.6169 (4)0.0467 (16)
H45−0.01170.50270.63020.056*
C51−0.2328 (6)0.4488 (10)0.6316 (5)0.070 (2)
H51−0.21250.53850.65240.083*
C52−0.2765 (6)0.4242 (12)0.5630 (5)0.074 (3)
H52−0.28840.49420.53020.089*
C53−0.2981 (6)0.2771 (10)0.5542 (5)0.069 (3)
H53−0.3290.23080.51390.082*
C54−0.2672 (7)0.2106 (10)0.6135 (6)0.066 (3)
H54−0.27270.11120.62070.08*
C55−0.2263 (6)0.3149 (10)0.6614 (5)0.060 (2)
H55−0.19880.29760.70640.072*
H1−0.020 (7)0.512 (12)0.747 (4)0.09 (3)*
C1A0.539 (6)−0.310 (3)0.556 (4)0.18 (4)0.37 (3)
H1A10.5102−0.33930.510.217*0.37 (3)
H1A20.6083−0.32870.57040.217*0.37 (3)
Cl1A0.528 (3)−0.134 (3)0.5549 (15)0.094 (5)0.37 (3)
Cl2A0.4991 (7)−0.427 (2)0.5939 (16)0.117 (8)0.37 (3)
C1B0.5793 (14)−0.284 (2)0.6005 (13)0.093 (8)0.63 (3)
H1B10.5783−0.34240.56360.112*0.63 (3)
H1B20.6472−0.27460.63030.112*0.63 (3)
Cl1B0.5391 (15)−0.1218 (16)0.5733 (8)0.081 (3)0.63 (3)
Cl2B0.5235 (9)−0.3745 (11)0.6373 (9)0.106 (5)0.63 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au10.0426 (2)0.0476 (2)0.0452 (2)−0.00013 (9)0.02019 (16)−0.00134 (11)
Fe10.0409 (6)0.0511 (5)0.0486 (7)−0.0013 (4)0.0191 (5)−0.0046 (5)
S10.0459 (9)0.0530 (10)0.0529 (11)−0.0054 (7)0.0215 (8)−0.0097 (9)
P10.0396 (9)0.0443 (8)0.0418 (10)−0.0003 (7)0.0196 (7)0.0001 (8)
P20.0471 (11)0.0430 (10)0.0443 (11)−0.0016 (7)0.0192 (9)−0.0016 (8)
O10.072 (3)0.042 (3)0.048 (3)−0.005 (2)0.028 (3)0.001 (2)
O20.056 (3)0.050 (3)0.054 (3)0.000 (2)0.031 (3)−0.002 (2)
C110.045 (4)0.047 (4)0.041 (4)−0.003 (3)0.018 (3)−0.001 (3)
C120.049 (4)0.054 (4)0.051 (4)0.003 (3)0.019 (3)0.000 (4)
C130.065 (5)0.057 (4)0.046 (4)0.003 (4)0.027 (4)0.008 (4)
C140.060 (5)0.059 (5)0.047 (5)−0.001 (3)0.013 (4)0.009 (4)
C150.060 (5)0.064 (4)0.050 (5)0.013 (4)0.022 (4)0.010 (4)
C160.042 (4)0.061 (5)0.059 (5)0.005 (3)0.028 (4)0.008 (4)
C210.036 (3)0.048 (3)0.047 (4)−0.005 (3)0.017 (3)−0.009 (3)
C220.053 (5)0.049 (4)0.053 (5)0.003 (3)0.021 (4)0.002 (3)
C230.046 (4)0.056 (5)0.070 (6)−0.006 (3)0.028 (4)−0.004 (4)
C240.045 (4)0.065 (4)0.054 (5)−0.003 (3)0.020 (3)−0.007 (4)
C250.046 (4)0.068 (5)0.071 (5)0.009 (4)0.019 (4)0.007 (4)
C260.051 (4)0.056 (4)0.053 (5)−0.003 (3)0.023 (3)0.006 (4)
C310.044 (4)0.043 (3)0.044 (4)0.003 (3)0.020 (3)0.002 (3)
C320.056 (5)0.053 (4)0.050 (5)−0.004 (3)0.031 (4)0.000 (3)
C330.056 (4)0.047 (4)0.059 (5)0.000 (3)0.022 (4)−0.002 (4)
C340.062 (5)0.053 (4)0.054 (5)−0.014 (3)0.024 (4)−0.002 (4)
C350.050 (5)0.061 (5)0.069 (6)−0.009 (3)0.028 (4)0.001 (4)
C360.050 (4)0.050 (4)0.054 (5)−0.002 (3)0.024 (3)0.001 (4)
C410.040 (4)0.051 (4)0.049 (5)0.001 (3)0.023 (3)−0.004 (3)
C420.044 (4)0.049 (4)0.050 (4)−0.003 (3)0.019 (3)−0.005 (4)
C430.045 (4)0.060 (5)0.042 (4)0.000 (3)0.017 (3)−0.007 (3)
C440.049 (4)0.060 (4)0.045 (4)0.003 (3)0.021 (3)0.009 (4)
C450.047 (4)0.047 (4)0.052 (4)−0.003 (3)0.026 (3)0.000 (3)
C510.048 (4)0.072 (5)0.092 (7)0.004 (4)0.032 (5)−0.020 (5)
C520.047 (4)0.090 (6)0.081 (7)0.017 (4)0.021 (4)0.000 (6)
C530.039 (5)0.094 (7)0.072 (7)−0.013 (4)0.020 (4)−0.030 (5)
C540.053 (5)0.075 (6)0.082 (7)−0.009 (4)0.039 (5)−0.008 (5)
C550.054 (5)0.082 (5)0.055 (5)−0.006 (4)0.032 (4)−0.006 (5)
C1A0.19 (7)0.101 (13)0.34 (11)0.00 (4)0.20 (8)0.00 (4)
Cl1A0.070 (6)0.100 (7)0.098 (13)−0.005 (6)0.016 (10)0.011 (8)
Cl2A0.077 (5)0.108 (9)0.147 (17)0.009 (5)0.020 (7)0.040 (12)
C1B0.051 (10)0.097 (12)0.13 (2)0.014 (8)0.029 (11)0.029 (13)
Cl1B0.076 (6)0.079 (3)0.084 (7)0.002 (3)0.026 (6)−0.008 (4)
Cl2B0.098 (5)0.090 (4)0.149 (11)0.016 (4)0.068 (7)0.034 (5)

Geometric parameters (Å, °)

Au1—P12.2609 (18)C32—H320.95
Au1—S12.3084 (19)C33—C341.379 (11)
S1—P22.050 (3)C33—H330.95
P1—C311.819 (7)C34—C351.372 (12)
P1—C211.821 (6)C34—H340.95
P1—C111.822 (7)C35—C361.377 (11)
P2—O11.503 (6)C35—H350.95
P2—O21.541 (5)C36—H360.95
P2—C411.786 (9)C41—C451.416 (10)
O2—H11.11 (11)C41—C421.424 (11)
C11—C161.384 (10)C42—C431.428 (11)
C11—C121.387 (10)C42—H420.95
C12—C131.379 (11)C43—C441.416 (11)
C12—H120.95C43—H430.95
C13—C141.383 (12)C44—C451.424 (11)
C13—H130.95C44—H440.95
C14—C151.402 (13)C45—H450.95
C14—H140.95C51—C551.403 (13)
C15—C161.361 (12)C51—C521.446 (13)
C15—H150.95C51—H510.95
C16—H160.95C52—C531.405 (14)
C21—C221.372 (10)C52—H520.95
C21—C261.402 (10)C53—C541.382 (15)
C22—C231.375 (12)C53—H530.95
C22—H220.95C54—C551.406 (13)
C23—C241.378 (12)C54—H540.95
C23—H230.95C55—H550.95
C24—C251.381 (11)C1A—Cl2A1.642 (17)
C24—H240.95C1A—Cl1A1.645 (17)
C25—C261.383 (10)C1A—H1A10.99
C25—H250.95C1A—H1A20.99
C26—H260.95C1B—Cl2B1.629 (14)
C31—C321.381 (10)C1B—Cl1B1.656 (14)
C31—C361.396 (10)C1B—H1B10.99
C32—C331.399 (11)C1B—H1B20.99
P1—Au1—S1176.81 (6)C33—C32—H32120.1
P2—S1—Au199.14 (9)C34—C33—C32119.7 (8)
C31—P1—C21106.3 (3)C34—C33—H33120.2
C31—P1—C11104.6 (3)C32—C33—H33120.2
C21—P1—C11106.1 (3)C35—C34—C33120.7 (7)
C31—P1—Au1113.8 (2)C35—C34—H34119.6
C21—P1—Au1113.1 (2)C33—C34—H34119.6
C11—P1—Au1112.3 (2)C34—C35—C36119.8 (8)
O1—P2—O2107.6 (3)C34—C35—H35120.1
O1—P2—C41110.8 (3)C36—C35—H35120.1
O2—P2—C41110.1 (3)C35—C36—C31120.5 (7)
O1—P2—S1113.9 (3)C35—C36—H36119.7
O2—P2—S1106.0 (2)C31—C36—H36119.7
C41—P2—S1108.3 (3)C45—C41—C42107.2 (7)
P2—O2—H1115 (5)C45—C41—P2126.0 (5)
C16—C11—C12118.7 (7)C42—C41—P2126.8 (6)
C16—C11—P1118.3 (6)C41—C42—C43108.6 (7)
C12—C11—P1122.8 (5)C41—C42—H42125.7
C13—C12—C11119.9 (7)C43—C42—H42125.7
C13—C12—H12120.1C44—C43—C42107.5 (7)
C11—C12—H12120.1C44—C43—H43126.3
C12—C13—C14121.0 (8)C42—C43—H43126.3
C12—C13—H13119.5C43—C44—C45108.1 (7)
C14—C13—H13119.5C43—C44—H44125.9
C13—C14—C15119.0 (8)C45—C44—H44125.9
C13—C14—H14120.5C41—C45—C44108.6 (6)
C15—C14—H14120.5C41—C45—H45125.7
C16—C15—C14119.2 (8)C44—C45—H45125.7
C16—C15—H15120.4C55—C51—C52106.9 (8)
C14—C15—H15120.4C55—C51—H51126.5
C15—C16—C11122.1 (8)C52—C51—H51126.5
C15—C16—H16119C53—C52—C51106.9 (10)
C11—C16—H16119C53—C52—H52126.5
C22—C21—C26118.9 (6)C51—C52—H52126.5
C22—C21—P1120.9 (6)C54—C53—C52109.1 (9)
C26—C21—P1119.9 (5)C54—C53—H53125.5
C21—C22—C23121.7 (8)C52—C53—H53125.5
C21—C22—H22119.2C53—C54—C55108.6 (8)
C23—C22—H22119.2C53—C54—H54125.7
C22—C23—C24118.9 (7)C55—C54—H54125.7
C22—C23—H23120.6C51—C55—C54108.5 (9)
C24—C23—H23120.6C51—C55—H55125.8
C23—C24—C25121.1 (7)C54—C55—H55125.8
C23—C24—H24119.4Cl2A—C1A—Cl1A128 (3)
C25—C24—H24119.4Cl2A—C1A—H1A1105.3
C24—C25—C26119.4 (8)Cl1A—C1A—H1A1105.3
C24—C25—H25120.3Cl2A—C1A—H1A2105.3
C26—C25—H25120.3Cl1A—C1A—H1A2105.3
C25—C26—C21120.0 (7)H1A1—C1A—H1A2106
C25—C26—H26120Cl2B—C1B—Cl1B118.3 (16)
C21—C26—H26120Cl2B—C1B—H1B1107.7
C32—C31—C36119.4 (7)Cl1B—C1B—H1B1107.7
C32—C31—P1121.9 (5)Cl2B—C1B—H1B2107.7
C36—C31—P1118.5 (5)Cl1B—C1B—H1B2107.7
C31—C32—C33119.8 (7)H1B1—C1B—H1B2107.1
C31—C32—H32120.1
Au1—S1—P2—O176.2 (3)C11—P1—C31—C3268.3 (7)
Au1—S1—P2—O2−165.7 (2)Au1—P1—C31—C32−168.8 (6)
Au1—S1—P2—C41−47.6 (2)C21—P1—C31—C36142.1 (6)
C31—P1—C11—C1697.8 (6)C11—P1—C31—C36−105.9 (6)
C21—P1—C11—C16−150.0 (6)Au1—P1—C31—C3617.0 (7)
Au1—P1—C11—C16−26.0 (6)C36—C31—C32—C33−2.8 (12)
C31—P1—C11—C12−76.7 (7)P1—C31—C32—C33−176.9 (6)
C21—P1—C11—C1235.4 (7)C31—C32—C33—C342.4 (13)
Au1—P1—C11—C12159.5 (5)C32—C33—C34—C35−1.7 (13)
C16—C11—C12—C130.2 (11)C33—C34—C35—C361.3 (14)
P1—C11—C12—C13174.7 (6)C34—C35—C36—C31−1.6 (13)
C11—C12—C13—C140.2 (12)C32—C31—C36—C352.4 (12)
C12—C13—C14—C15−1.9 (12)P1—C31—C36—C35176.8 (7)
C13—C14—C15—C163.2 (12)O1—P2—C41—C45170.2 (6)
C14—C15—C16—C11−2.9 (13)O2—P2—C41—C4551.3 (7)
C12—C11—C16—C151.2 (11)S1—P2—C41—C45−64.2 (7)
P1—C11—C16—C15−173.5 (7)O1—P2—C41—C42−9.0 (8)
C31—P1—C21—C22150.7 (6)O2—P2—C41—C42−127.9 (6)
C11—P1—C21—C2239.8 (7)S1—P2—C41—C42116.6 (6)
Au1—P1—C21—C22−83.8 (7)C45—C41—C42—C43−0.2 (8)
C31—P1—C21—C26−35.8 (7)P2—C41—C42—C43179.1 (6)
C11—P1—C21—C26−146.7 (6)C41—C42—C43—C44−0.1 (8)
Au1—P1—C21—C2689.7 (6)C42—C43—C44—C450.3 (8)
C26—C21—C22—C232.1 (12)C42—C41—C45—C440.4 (8)
P1—C21—C22—C23175.7 (7)P2—C41—C45—C44−178.9 (5)
C21—C22—C23—C24−1.4 (13)C43—C44—C45—C41−0.4 (8)
C22—C23—C24—C25−0.7 (13)C55—C51—C52—C532.3 (10)
C23—C24—C25—C262.0 (13)C51—C52—C53—C54−1.9 (10)
C24—C25—C26—C21−1.3 (12)C52—C53—C54—C550.7 (10)
C22—C21—C26—C25−0.8 (11)C52—C51—C55—C54−1.9 (9)
P1—C21—C26—C25−174.4 (6)C53—C54—C55—C510.7 (10)
C21—P1—C31—C32−43.7 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1···O1i1.11 (11)1.33 (11)2.432 (7)173 (9)

Symmetry codes: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2770).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Crespo, O., Brusko, V. V., Gimeno, M. C., Tornil, M. L., Laguna, A. & Zabirov, N. G. (2004). Eur. J. Inorg. Chem.2, 423–430.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Foreman, M. R. S., Slawin, A. M. Z. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3653–3657
  • Preisenberger, M., Schier, A. & Schmidbaur, H. (1998). Z. Naturforsch. Teil B, 53, 781–787.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Van Zyl, W. E. (2010). Comments Inorg. Chem.31, 13–45.
  • Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem.167, 117–132.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography