PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): o2876–o2877.
Published online 2010 October 20. doi:  10.1107/S1600536810041644
PMCID: PMC3008987

2-Amino-5-methyl­pyridinium 1H-pyrazole-3,5-dicarboxyl­ate trihydrate

Abstract

In the title compound, 2C6H9N2 +·C5H2N2O4 2−·3H2O, the 1H-pyrazole-3,5-dicarboxyl­ate anion is close to planar [maximum deviation = 0.208 (1) Å]. The two distinct 2-amino-5-methyl­pyridinium cations are also almost planar, with maximum deviations of 0.018 (2) and 0.014 (2) Å. In the crystal, pairs of inter­molecular N—H(...)O and O—H(...)O hydrogen bonds connect neighbouring mol­ecules into dimers, generating R 2 2(8) and R 2 4(8) ring motifs, respectively. Further inter­molecular N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see; Xia et al. (2007 [triangle]); King et al. (2004 [triangle]). For details and applications of pyrazole-3,5-dicarb­oxy­lic acid, see: Lee et al. (1989 [triangle]); Chambers et al. (1985 [triangle]); Pan et al. (2000 [triangle]); Pan, Ching et al. (2001 [triangle]); Pan, Frydel et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2876-scheme1.jpg

Experimental

Crystal data

  • 2C6H9N2 +·C5H2N2O4 2−·3H2O
  • M r = 426.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2876-efi1.jpg
  • a = 7.8985 (1) Å
  • b = 9.2195 (1) Å
  • c = 15.3922 (2) Å
  • α = 101.942 (1)°
  • β = 93.883 (1)°
  • γ = 104.648 (1)°
  • V = 1052.40 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.47 × 0.24 × 0.21 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.952, T max = 0.978
  • 26056 measured reflections
  • 6103 independent reflections
  • 5085 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.113
  • S = 1.07
  • 6103 reflections
  • 325 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810041644/hb5681sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810041644/hb5681Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship and MH thanks USM for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Pyrazole-related molecules have attracted considerable attention due to their biological activities (Lee et al., 1989; Chambers et al., 1985). 3,5-Pyrazole dicarboxylic acid (H2PzDCA) is a multifunctional ligand; it has multiple coordination sites that allow structures of higher dimensions and it also has abstractable protons that allow various acidity-dependent coordination modes (Pan et al., 2000). A variety of H2PzDCA coordination compounds have been synthesized and reported in the literature (Pan, Ching et al., 2001; Pan, Frydel et al., 2001). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound, (Fig. 1), consists of two 2-amino-5-methylpyridinium cations, a 1H-pyrazole-3-5-dicarboxylate anion and three water molecules. The 1H-pyrazole-3,5-dicarboxylate anion and 2-amino-5-methylpyridinium cations are approximately planar with a maximum deviations of 0.208 (1) Å at atom O2 and 0.018 (2) Å at atoms N4A, C11A and 0.014 (2) Å at atom N4B. The torsion angles (O2/C2/C1/N1), (C1–C3/O1), (C3–C5/O3) and (N2/C4/C5/04) are 8.81 (15), 10.46 (16), 4.89 (15) and 4.60 (16)°, respectively. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those related structures (Xia et al., 2007; King et al., 2004).

In the crystal packing (Fig. 2), intermolecular N2—H1N2···O4, N4A—H3NA···O1W, N3B—H1NB···O3, N4B—H2NB···O4, N4B—H3NB···O3W, N3A—H1NA···O2, N4A—H2NA···O1, O1W—H1W1···O3, O1W—H2W1···O3W, O2W—H1W2···O1, O2W—H2W2···O1, O3W—H1W3···O2, O3W—H2W3···O2W and C10—H10A···O2W hydrogen bonds (Table 1) link the molecules into three-dimensional network. Within this network, pairs of intermolecular N3B—H1NB···O3, N4A—H2NA···O1 and O1—H1W2···O2W, O2W—H1W2···O1 hydrogen bonds connect neighbouring molecules to form dimers, generating R22(8) and R24(8) (Bernstein et al., 1995) ring motifs, respectively.

Experimental

A hot methanol/water solution (10/10 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and pyrazole-3,5-dicarboxylic acid (78 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless blocks of (I) appeared after a few days.

Refinement

The hydrogen atoms bound to O atoms were located in a difference map and constrained to ride with their parent atoms, with Uiso(H) = 1.5Uiso(O) [O—H = 0.85 (2)–0.889 (18) Å]. The hydrogen atoms bound to N atoms were located in a difference map and were refined freely [N—H = 0.863 (18)–0.943 (18) Å]. All other H atoms to C were positioned geometrically [range of C—H = 0.93–0.96 Å] with Uiso(H) = 1.2 or 1.5Uiso(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the title compound, viewed along b axis. Intermolecular hydrogen bonds linked the molecules into three-dimensional network.

Crystal data

2C6H9N2+·C5H2N2O42·3H2OZ = 2
Mr = 426.44F(000) = 452
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8985 (1) ÅCell parameters from 9892 reflections
b = 9.2195 (1) Åθ = 2.4–35.1°
c = 15.3922 (2) ŵ = 0.11 mm1
α = 101.942 (1)°T = 100 K
β = 93.883 (1)°Block, colourless
γ = 104.648 (1)°0.47 × 0.24 × 0.21 mm
V = 1052.40 (2) Å3

Data collection

Bruker SMART APEXII CCD diffractometer6103 independent reflections
Radiation source: fine-focus sealed tube5085 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −11→11
Tmin = 0.952, Tmax = 0.978k = −12→12
26056 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2775P] where P = (Fo2 + 2Fc2)/3
6103 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.68720 (11)0.64094 (9)0.43780 (5)0.02004 (16)
O20.63845 (11)0.84955 (9)0.40067 (5)0.02212 (17)
O30.70719 (11)0.24170 (9)0.10667 (5)0.02152 (17)
O40.58424 (10)0.33899 (9)0.00540 (5)0.01827 (16)
N10.56503 (12)0.68973 (10)0.21937 (6)0.01756 (18)
N20.56444 (12)0.58634 (10)0.14333 (6)0.01631 (17)
C10.65092 (14)0.71292 (12)0.38074 (7)0.01627 (19)
C20.62433 (13)0.63055 (11)0.28462 (6)0.01510 (19)
C30.66147 (13)0.49037 (11)0.24972 (6)0.01555 (19)
H3A0.70320.42790.28120.019*
C40.62226 (13)0.46589 (11)0.15823 (6)0.01420 (18)
C50.63753 (13)0.33966 (11)0.08394 (6)0.01463 (18)
N3A0.80196 (12)0.03401 (11)0.55694 (6)0.01923 (18)
N4A0.90801 (14)−0.15177 (12)0.60538 (7)0.0248 (2)
C6A0.89063 (14)−0.00860 (13)0.62071 (7)0.0192 (2)
C7A0.96163 (15)0.10318 (14)0.70158 (7)0.0226 (2)
H7AA1.02350.07860.74750.027*
C8A0.93848 (15)0.24717 (14)0.71159 (8)0.0239 (2)
H8AA0.98380.31930.76530.029*
C9A0.84776 (15)0.29051 (13)0.64303 (8)0.0224 (2)
C100.78076 (15)0.17873 (13)0.56658 (7)0.0212 (2)
H10A0.71920.20170.51990.025*
C11A0.82578 (18)0.45015 (14)0.65337 (10)0.0324 (3)
H11A0.77790.46140.59690.049*
H11B0.93840.52450.67290.049*
H11C0.74700.46650.69690.049*
N3B0.26714 (12)0.00202 (10)0.01212 (6)0.01689 (17)
N4B0.37262 (14)−0.08155 (12)0.13095 (7)0.02199 (19)
C6B0.30472 (14)0.02005 (12)0.10101 (7)0.01719 (19)
C7B0.26600 (15)0.14651 (13)0.15793 (7)0.0213 (2)
H7BA0.29090.16420.21970.026*
C8B0.19158 (15)0.24211 (12)0.12087 (8)0.0214 (2)
H8BA0.16500.32400.15850.026*
C9B0.15376 (14)0.22026 (12)0.02713 (8)0.0197 (2)
C10B0.19410 (14)0.09771 (12)−0.02480 (7)0.0184 (2)
H10B0.17120.0791−0.08680.022*
C11B0.07429 (16)0.32759 (14)−0.01255 (9)0.0264 (2)
H11D0.05640.2936−0.07660.040*
H11E0.15260.42990.00460.040*
H11F−0.03690.32780.00900.040*
O3W0.52828 (12)1.04505 (10)0.31330 (5)0.02258 (17)
O2W0.54335 (13)0.32242 (10)0.43022 (6)0.02698 (19)
O1W0.84767 (12)0.15951 (12)0.25161 (6)0.0291 (2)
H1N20.523 (2)0.6047 (18)0.0897 (11)0.027 (4)*
H3NA0.968 (2)−0.176 (2)0.6462 (12)0.040 (5)*
H1NB0.286 (2)−0.080 (2)−0.0250 (11)0.033 (4)*
H2NB0.393 (2)−0.162 (2)0.0913 (12)0.039 (4)*
H3NB0.409 (2)−0.063 (2)0.1891 (12)0.038 (4)*
H1NA0.749 (2)−0.037 (2)0.5028 (12)0.040 (4)*
H2NA0.853 (2)−0.220 (2)0.5538 (12)0.039 (4)*
H1W10.820 (2)0.200 (2)0.2082 (13)0.045 (5)*
H2W10.751 (3)0.123 (2)0.2703 (14)0.053 (6)*
H1W20.591 (2)0.414 (2)0.4263 (12)0.043 (5)*
H2W20.470 (2)0.330 (2)0.4684 (13)0.044 (5)*
H1W30.558 (2)0.9771 (19)0.3403 (11)0.034 (4)*
H2W30.529 (2)1.128 (2)0.3540 (12)0.043 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0295 (4)0.0177 (4)0.0135 (3)0.0084 (3)0.0007 (3)0.0032 (3)
O20.0349 (4)0.0168 (4)0.0150 (3)0.0118 (3)−0.0016 (3)0.0001 (3)
O30.0337 (4)0.0199 (4)0.0145 (3)0.0152 (3)0.0010 (3)0.0026 (3)
O40.0249 (4)0.0174 (4)0.0129 (3)0.0083 (3)−0.0006 (3)0.0022 (3)
N10.0240 (4)0.0158 (4)0.0130 (4)0.0078 (3)0.0007 (3)0.0013 (3)
N20.0224 (4)0.0151 (4)0.0120 (4)0.0080 (3)0.0004 (3)0.0014 (3)
C10.0186 (5)0.0164 (4)0.0130 (4)0.0051 (4)0.0010 (3)0.0015 (3)
C20.0181 (4)0.0143 (4)0.0124 (4)0.0047 (4)0.0010 (3)0.0020 (3)
C30.0188 (5)0.0148 (4)0.0135 (4)0.0055 (4)0.0011 (3)0.0034 (3)
C40.0157 (4)0.0129 (4)0.0138 (4)0.0046 (3)0.0010 (3)0.0022 (3)
C50.0167 (4)0.0140 (4)0.0128 (4)0.0039 (3)0.0020 (3)0.0027 (3)
N3A0.0224 (4)0.0195 (4)0.0143 (4)0.0057 (3)−0.0004 (3)0.0016 (3)
N4A0.0293 (5)0.0217 (5)0.0213 (5)0.0068 (4)−0.0069 (4)0.0037 (4)
C6A0.0182 (5)0.0214 (5)0.0164 (5)0.0025 (4)0.0006 (4)0.0047 (4)
C7A0.0210 (5)0.0264 (5)0.0158 (5)0.0009 (4)−0.0030 (4)0.0037 (4)
C8A0.0203 (5)0.0256 (6)0.0189 (5)−0.0002 (4)−0.0002 (4)−0.0015 (4)
C9A0.0206 (5)0.0207 (5)0.0228 (5)0.0042 (4)0.0021 (4)0.0002 (4)
C100.0223 (5)0.0212 (5)0.0199 (5)0.0074 (4)0.0008 (4)0.0033 (4)
C11A0.0317 (6)0.0207 (6)0.0391 (7)0.0074 (5)−0.0022 (5)−0.0039 (5)
N3B0.0194 (4)0.0146 (4)0.0160 (4)0.0062 (3)0.0015 (3)0.0005 (3)
N4B0.0294 (5)0.0216 (5)0.0152 (4)0.0108 (4)−0.0015 (4)0.0013 (3)
C6B0.0168 (4)0.0158 (5)0.0168 (5)0.0028 (4)0.0016 (3)0.0012 (4)
C7B0.0238 (5)0.0187 (5)0.0184 (5)0.0050 (4)0.0034 (4)−0.0009 (4)
C8B0.0209 (5)0.0152 (5)0.0260 (5)0.0047 (4)0.0065 (4)−0.0009 (4)
C9B0.0168 (5)0.0154 (5)0.0272 (5)0.0046 (4)0.0049 (4)0.0049 (4)
C10B0.0184 (5)0.0174 (5)0.0194 (5)0.0048 (4)0.0021 (4)0.0048 (4)
C11B0.0260 (6)0.0207 (5)0.0370 (6)0.0100 (4)0.0063 (5)0.0112 (5)
O3W0.0336 (5)0.0189 (4)0.0159 (4)0.0100 (3)−0.0003 (3)0.0032 (3)
O2W0.0402 (5)0.0185 (4)0.0252 (4)0.0108 (4)0.0132 (4)0.0052 (3)
O1W0.0251 (4)0.0407 (5)0.0259 (4)0.0095 (4)−0.0003 (3)0.0182 (4)

Geometric parameters (Å, °)

O1—C11.2637 (12)C11A—H11A0.9600
O2—C11.2640 (13)C11A—H11B0.9600
O3—C51.2637 (12)C11A—H11C0.9600
O4—C51.2511 (12)N3B—C6B1.3468 (13)
N1—N21.3467 (12)N3B—C10B1.3618 (13)
N1—C21.3483 (13)N3B—H1NB0.897 (17)
N2—C41.3572 (12)N4B—C6B1.3329 (14)
N2—H1N20.929 (16)N4B—H2NB0.910 (18)
C1—C21.4907 (14)N4B—H3NB0.890 (18)
C2—C31.4038 (14)C6B—C7B1.4193 (14)
C3—C41.3798 (13)C7B—C8B1.3683 (16)
C3—H3A0.9300C7B—H7BA0.9300
C4—C51.4884 (13)C8B—C9B1.4153 (16)
N3A—C6A1.3468 (14)C8B—H8BA0.9300
N3A—C101.3656 (14)C9B—C10B1.3638 (15)
N3A—H1NA0.943 (18)C9B—C11B1.5027 (15)
N4A—C6A1.3356 (15)C10B—H10B0.9300
N4A—H3NA0.863 (18)C11B—H11D0.9600
N4A—H2NA0.909 (18)C11B—H11E0.9600
C6A—C7A1.4171 (15)C11B—H11F0.9600
C7A—C8A1.3643 (17)O3W—H1W30.889 (18)
C7A—H7AA0.9300O3W—H2W30.879 (19)
C8A—C9A1.4155 (17)O2W—H1W20.85 (2)
C8A—H8AA0.9300O2W—H2W20.86 (2)
C9A—C101.3656 (15)O1W—H1W10.87 (2)
C9A—C11A1.5026 (17)O1W—H2W10.85 (2)
C10—H10A0.9300
N2—N1—C2104.08 (8)N3A—C10—H10A119.2
N1—N2—C4112.83 (8)C9A—C10—H10A119.2
N1—N2—H1N2117.6 (9)C9A—C11A—H11A109.5
C4—N2—H1N2129.5 (9)C9A—C11A—H11B109.5
O1—C1—O2123.84 (9)H11A—C11A—H11B109.5
O1—C1—C2117.16 (9)C9A—C11A—H11C109.5
O2—C1—C2119.00 (9)H11A—C11A—H11C109.5
N1—C2—C3111.76 (9)H11B—C11A—H11C109.5
N1—C2—C1121.73 (9)C6B—N3B—C10B123.39 (9)
C3—C2—C1126.47 (9)C6B—N3B—H1NB118.8 (11)
C4—C3—C2104.59 (9)C10B—N3B—H1NB117.7 (11)
C4—C3—H3A127.7C6B—N4B—H2NB119.7 (11)
C2—C3—H3A127.7C6B—N4B—H3NB118.8 (11)
N2—C4—C3106.73 (9)H2NB—N4B—H3NB121.1 (16)
N2—C4—C5122.30 (9)N4B—C6B—N3B119.07 (10)
C3—C4—C5130.96 (9)N4B—C6B—C7B123.59 (10)
O4—C5—O3125.34 (9)N3B—C6B—C7B117.33 (10)
O4—C5—C4118.90 (9)C8B—C7B—C6B119.29 (10)
O3—C5—C4115.76 (9)C8B—C7B—H7BA120.4
C6A—N3A—C10123.07 (10)C6B—C7B—H7BA120.4
C6A—N3A—H1NA120.5 (11)C7B—C8B—C9B122.07 (10)
C10—N3A—H1NA116.5 (11)C7B—C8B—H8BA119.0
C6A—N4A—H3NA118.1 (12)C9B—C8B—H8BA119.0
C6A—N4A—H2NA119.0 (11)C10B—C9B—C8B116.49 (10)
H3NA—N4A—H2NA122.8 (16)C10B—C9B—C11B122.09 (10)
N4A—C6A—N3A119.34 (10)C8B—C9B—C11B121.41 (10)
N4A—C6A—C7A123.26 (10)N3B—C10B—C9B121.42 (10)
N3A—C6A—C7A117.41 (10)N3B—C10B—H10B119.3
C8A—C7A—C6A119.48 (10)C9B—C10B—H10B119.3
C8A—C7A—H7AA120.3C9B—C11B—H11D109.5
C6A—C7A—H7AA120.3C9B—C11B—H11E109.5
C7A—C8A—C9A122.21 (10)H11D—C11B—H11E109.5
C7A—C8A—H8AA118.9C9B—C11B—H11F109.5
C9A—C8A—H8AA118.9H11D—C11B—H11F109.5
C10—C9A—C8A116.20 (10)H11E—C11B—H11F109.5
C10—C9A—C11A121.63 (11)H1W3—O3W—H2W3109.1 (15)
C8A—C9A—C11A122.17 (11)H1W2—O2W—H2W2105.7 (17)
N3A—C10—C9A121.62 (10)H1W1—O1W—H2W1105.7 (18)
C2—N1—N2—C4−0.55 (11)N4A—C6A—C7A—C8A179.69 (11)
N2—N1—C2—C30.16 (11)N3A—C6A—C7A—C8A−0.19 (16)
N2—N1—C2—C1177.98 (9)C6A—C7A—C8A—C9A−1.06 (17)
O1—C1—C2—N1172.05 (10)C7A—C8A—C9A—C101.43 (17)
O2—C1—C2—N1−8.81 (15)C7A—C8A—C9A—C11A−178.63 (11)
O1—C1—C2—C3−10.46 (16)C6A—N3A—C10—C9A−0.66 (17)
O2—C1—C2—C3168.68 (10)C8A—C9A—C10—N3A−0.58 (16)
N1—C2—C3—C40.25 (12)C11A—C9A—C10—N3A179.48 (11)
C1—C2—C3—C4−177.44 (10)C10B—N3B—C6B—N4B178.55 (10)
N1—N2—C4—C30.72 (12)C10B—N3B—C6B—C7B−0.34 (15)
N1—N2—C4—C5−178.32 (9)N4B—C6B—C7B—C8B−178.10 (11)
C2—C3—C4—N2−0.56 (11)N3B—C6B—C7B—C8B0.74 (15)
C2—C3—C4—C5178.37 (10)C6B—C7B—C8B—C9B−0.84 (17)
N2—C4—C5—O4−4.89 (15)C7B—C8B—C9B—C10B0.50 (16)
C3—C4—C5—O4176.33 (10)C7B—C8B—C9B—C11B−179.15 (10)
N2—C4—C5—O3174.18 (9)C6B—N3B—C10B—C9B0.02 (16)
C3—C4—C5—O3−4.60 (16)C8B—C9B—C10B—N3B−0.08 (15)
C10—N3A—C6A—N4A−178.84 (10)C11B—C9B—C10B—N3B179.57 (10)
C10—N3A—C6A—C7A1.05 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···O4i0.931 (16)1.871 (16)2.7912 (12)169.7 (15)
N4A—H3NA···O1Wii0.861 (18)2.024 (17)2.8520 (14)161.2 (17)
N3B—H1NB···O3iii0.900 (17)1.755 (17)2.6483 (12)171.4 (16)
N4B—H2NB···O4iii0.914 (18)2.022 (18)2.9323 (13)173.8 (16)
N4B—H3NB···O3Wiv0.889 (18)2.007 (18)2.8641 (13)161.6 (17)
N3A—H1NA···O2iv0.942 (18)1.732 (18)2.6686 (12)172.8 (17)
N4A—H2NA···O1iv0.907 (18)2.106 (18)3.0021 (13)169.4 (15)
O1W—H1W1···O30.871 (19)1.902 (19)2.7517 (12)164.8 (17)
O1W—H2W1···O3Wiv0.85 (2)1.94 (2)2.7878 (14)178 (2)
O2W—H1W2···O10.850 (18)2.003 (18)2.8427 (12)169.8 (17)
O2W—H2W2···O1v0.858 (18)1.987 (18)2.8434 (13)176.1 (15)
O3W—H1W3···O20.888 (17)1.844 (17)2.7299 (12)174.8 (15)
O3W—H2W3···O2Wvi0.881 (18)1.900 (18)2.7758 (13)172.1 (17)
C10—H10A···O2W0.932.503.3986 (15)164

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y, −z+1; (iii) −x+1, −y, −z; (iv) x, y−1, z; (v) −x+1, −y+1, −z+1; (vi) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5681).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.
  • Chambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem.50, 4736–4738.
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures Berlin: Springer.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
  • King, P., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans, pp. 852–861. [PubMed]
  • Lee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem.54, 428–431.
  • Pan, L., Ching, N., Huang, X. & Li, J. (2001). Chem. Eur. J.7, 4431–4437. [PubMed]
  • Pan, L., Frydel, T., Sander, M. B., Huang, X. Y. & Li, J. (2001). Inorg. Chem.40, 1271–1276. [PubMed]
  • Pan, L., Huang, X. Y., Li, J., Wu, Y. G. & Zheng, N. W. (2000). Angew. Chem. Int. Ed. Engl.39, 527–530. [PubMed]
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society New York: Wiley.
  • Scheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xia, J., Zhao, B., Wang, H.-S., Shi, W., Ma, Y., Song, H.-B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg Chem.46, 3450–3458. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography