PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 November 1; 66(Pt 11): m1480.
Published online 2010 October 30. doi:  10.1107/S1600536810042807
PMCID: PMC3008982

catena-Poly[[[(triphenyl­phosphane)copper(I)]-di-μ-iodido-[(triphenyl­phosphane)copper(I)]-μ-[3,6-bis­(4-pyrid­yl)-1,2,4,5-tetra­zine]] acetonitrile disolvate]

Abstract

The title compound, {[Cu2I2(C12H8N6)(C18H15P)2]·2CH3CN}n, contains centrosymmetric dinuclear Cu2I2(PPh3)2 units bridged by 3,6-bis­(4-pyrid­yl)-1,2,4,5-tetra­zine ligands lying also across crystallographic inversion centers, giving a chain structure in the ab plane. The distorted tetra­hedral CuI atoms in the dinuclear unit are coordinated by two bridging iodide anions, one pyridine N atom from the substituted tetra­zine ligand and one terminal triphenyl­phosphine P-atom donor. The Cu(...)Cu distance is 2.8293 (12) Å, implying a weak Cu(...)Cu inter­action.

Related literature

For examples of metal-organic compounds with intriguing architectures and topologies, see: Eddaoudi et al. (2001 [triangle]). For potential applications of these compounds, see: Banerjee et al. (2008 [triangle]); Zhang et al. (2007 [triangle]). For examples of metal-organic frameworks constructed using long bridging ligands, see: Withersby et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1480-scheme1.jpg

Experimental

Crystal data

  • [Cu2I2(C12H8N6)(C18H15P)2]·2C2H3N
  • M r = 1223.80
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1480-efi1.jpg
  • a = 12.344 (3) Å
  • b = 11.675 (2) Å
  • c = 18.521 (4) Å
  • β = 101.41 (3)°
  • V = 2616.4 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.10 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Rigaku Saturn724 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007 [triangle]) T min = 0.779, T max = 1.000
  • 12271 measured reflections
  • 5042 independent reflections
  • 4233 reflections with I > 2sI)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.079
  • S = 1.09
  • 5042 reflections
  • 299 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810042807/zs2071sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810042807/zs2071Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of Jiangsu University (08JDG036).

supplementary crystallographic information

Comment

Metal-organic frameworks have attracted great attention in recent years not only because of their intriguing structures (Eddaoudi et al., 2001) but also their potential applications (Banerjee et al., 2008; Zhang et al., 2007). Long bridging ligands can be employed for the construction of interesting metal-organic frameworks (Withersby et al., 2000). The extended bridging ligand 2,6-bis(4-pyridyl)-1,2,4,5-tetrazine was used to synthesize the title compound {[Cu2I2(C12H8N6)((C6H5)3P)2 .2(CH3CN)}n (3,6-di2(PPh3)2 (I) by using a diffusion reaction and the crystal structure is presented here.

The centrosymmetric dinuclear Cu2I2(PPh3)2 complex units in (I) are linked by the extended 3,6-di-4-pyridyl-1,2,4,5-tetrazine ligands, also lying across crystallographic inversion centers, giving a one-dimensional chain structure (Fig. 1). Each tetrahedral CuI centre in the dinuclear unit is coordinated by two bridging I anions [Cu—I, 2.6412 (9), 2.6603 (9) Å], one pyridine-N from the bridging substituted tetrazine ligand [Cu—N, 2.066 (3)Å] and one terminal triphenylphosphine P-donor [Cu—P, 2.2388 (11) Å]. The Cu···Cui distance is 2.8293 (12) Å, implying a weak Cu···Cu interaction [symmetry code: (i) -x, -y, -z].

Experimental

CuI (0.1 mmol) and triphenylphosphine (0.2 mmol) were added to a mixture of 3 ml of dimethylformamide and 2 ml of H3CN with thorough stirring for 2 minutes. After filtering, the filtrate was carefully layered with a solution of 0.1 mmol 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine in 3 ml of CH2Cl2. Blue block crystals were obtained after two weeks.

Refinement

H atoms were positioned geometrically with C—H(phenyl, pyridyl) = 0.93 Å or 0.96 Å (methyl) and refined using a riding model, with Uiso(H) = 1.2Ueq(C)phenyl, pyridyl or 1.5Ueq(C)methyl.

Figures

Fig. 1.
The molecular structure of a portion of the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted. Symmetry codes: (i) -x, -y, -z; (ii) -x + 1, -y - 1, -z.

Crystal data

[Cu2I2(C12H8N6)(C18H15P)2]·2C2H3NF(000) = 1212
Mr = 1223.80Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10225 reflections
a = 12.344 (3) Åθ = 2.8–29.1°
b = 11.675 (2) ŵ = 2.10 mm1
c = 18.521 (4) ÅT = 293 K
β = 101.41 (3)°Block, blue
V = 2616.4 (10) Å30.25 × 0.20 × 0.15 mm
Z = 2

Data collection

Rigaku Saturn724 diffractometer5042 independent reflections
Radiation source: fine-focus sealed tube4233 reflections with I > 2s˘I)
graphiteRint = 0.030
ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007)h = −15→11
Tmin = 0.779, Tmax = 1.000k = −14→14
12271 measured reflectionsl = −18→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0303P)2 + 0.5456P] where P = (Fo2 + 2Fc2)/3
5042 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I1−0.01591 (2)−0.05190 (2)0.113971 (13)0.04604 (10)
Cu10.11635 (4)0.00036 (4)0.02284 (2)0.04082 (13)
P10.23134 (8)0.14551 (8)0.06241 (5)0.0398 (2)
N10.1998 (2)−0.1497 (2)0.01109 (16)0.0407 (7)
N20.4794 (3)−0.4221 (3)−0.05567 (17)0.0466 (8)
N30.4453 (3)−0.4974 (3)0.05724 (16)0.0468 (8)
N40.1913 (5)0.7319 (6)0.2563 (3)0.121 (2)
C60.4276 (3)−0.4218 (3)0.0010 (2)0.0393 (9)
C130.3435 (3)0.1093 (3)0.13879 (19)0.0433 (9)
C20.3008 (3)−0.3135 (3)0.0653 (2)0.0518 (10)
H20.3187−0.36230.10550.062*
C230.0102 (5)0.3983 (5)0.0741 (4)0.101 (2)
H23−0.06140.41530.04980.121*
C220.0648 (6)0.4706 (5)0.1276 (4)0.106 (2)
H220.03000.53670.13940.128*
C210.1706 (5)0.4459 (4)0.1637 (4)0.0941 (19)
H210.20700.49450.20040.113*
C30.3460 (3)−0.3303 (3)0.00372 (19)0.0383 (8)
C10.2290 (3)−0.2235 (3)0.0664 (2)0.0517 (10)
H10.1990−0.21370.10830.062*
C80.3772 (4)0.1219 (4)−0.0334 (2)0.0648 (12)
H80.39750.0542−0.00780.078*
C70.3016 (3)0.1947 (3)−0.01016 (19)0.0463 (9)
C40.3140 (3)−0.2564 (3)−0.0553 (2)0.0483 (10)
H40.3409−0.2660−0.09840.058*
C190.1689 (3)0.2757 (3)0.0911 (2)0.0481 (10)
C160.5102 (4)0.0355 (4)0.2532 (2)0.0654 (13)
H160.56620.00990.29100.079*
C50.2420 (3)−0.1687 (3)−0.0490 (2)0.0472 (10)
H50.2214−0.1197−0.08900.057*
C170.5309 (4)0.1236 (4)0.2086 (2)0.0631 (12)
H170.59980.15870.21660.076*
C180.4468 (3)0.1597 (4)0.1513 (2)0.0554 (11)
H180.46060.21900.12080.066*
C140.3247 (4)0.0209 (3)0.1853 (2)0.0522 (10)
H140.2557−0.01410.17790.063*
C240.0620 (4)0.2999 (4)0.0565 (3)0.0708 (13)
H240.02450.25000.02100.085*
C110.3177 (5)0.3187 (5)−0.1108 (3)0.0841 (16)
H110.29730.3857−0.13710.101*
C150.4076 (4)−0.0155 (4)0.2426 (2)0.0646 (13)
H150.3940−0.07400.27370.078*
C100.3914 (5)0.2462 (6)−0.1326 (3)0.0908 (19)
H100.42060.2632−0.17400.109*
C120.2727 (4)0.2936 (4)−0.0497 (2)0.0648 (12)
H120.22260.3440−0.03530.078*
C200.2222 (4)0.3491 (4)0.1454 (3)0.0706 (13)
H200.29390.33260.16970.085*
C90.4224 (4)0.1483 (5)−0.0934 (3)0.0834 (16)
H90.47410.0994−0.10750.100*
C26−0.0159 (6)0.7161 (6)0.2552 (3)0.125 (3)
H26A−0.05650.73850.20760.187*
H26B−0.03620.76460.29220.187*
H26C−0.03290.63800.26470.187*
C250.1023 (7)0.7271 (6)0.2569 (3)0.0907 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.04230 (17)0.05492 (18)0.04190 (15)0.00885 (12)0.01074 (11)0.00954 (12)
Cu10.0381 (3)0.0371 (3)0.0471 (3)0.0054 (2)0.0081 (2)0.0014 (2)
P10.0371 (5)0.0416 (5)0.0413 (5)−0.0004 (4)0.0089 (4)0.0018 (4)
N10.0381 (18)0.0412 (17)0.0443 (17)0.0114 (14)0.0116 (14)0.0046 (15)
N20.048 (2)0.0468 (18)0.0485 (18)0.0197 (16)0.0180 (15)0.0066 (15)
N30.050 (2)0.0467 (18)0.0454 (18)0.0190 (16)0.0146 (15)0.0055 (16)
N40.108 (5)0.154 (5)0.095 (4)0.031 (5)0.005 (4)0.022 (3)
C60.037 (2)0.0367 (19)0.044 (2)0.0082 (16)0.0076 (17)0.0012 (17)
C130.037 (2)0.052 (2)0.0395 (19)0.0020 (18)0.0045 (17)−0.0006 (18)
C20.062 (3)0.049 (2)0.049 (2)0.027 (2)0.019 (2)0.0137 (19)
C230.076 (4)0.080 (4)0.138 (5)0.033 (3)−0.001 (4)−0.028 (4)
C220.103 (5)0.062 (3)0.158 (6)0.020 (3)0.033 (5)−0.038 (4)
C210.082 (4)0.072 (4)0.129 (5)−0.004 (3)0.023 (4)−0.046 (3)
C30.033 (2)0.037 (2)0.045 (2)0.0086 (16)0.0087 (16)−0.0022 (17)
C10.056 (3)0.056 (2)0.049 (2)0.025 (2)0.0236 (19)0.012 (2)
C80.066 (3)0.070 (3)0.062 (3)−0.005 (3)0.022 (2)−0.003 (2)
C70.045 (2)0.053 (2)0.041 (2)−0.0093 (19)0.0079 (18)0.0023 (19)
C40.051 (2)0.053 (2)0.044 (2)0.019 (2)0.0167 (18)0.0094 (19)
C190.047 (2)0.044 (2)0.055 (2)−0.0004 (19)0.0153 (19)−0.002 (2)
C160.060 (3)0.085 (3)0.046 (2)0.014 (3)−0.004 (2)−0.010 (2)
C50.046 (2)0.052 (2)0.045 (2)0.0205 (19)0.0113 (18)0.0115 (19)
C170.044 (3)0.082 (3)0.060 (3)−0.006 (2)0.002 (2)−0.006 (3)
C180.046 (3)0.068 (3)0.052 (2)−0.002 (2)0.008 (2)0.002 (2)
C140.052 (3)0.060 (3)0.045 (2)−0.001 (2)0.009 (2)0.002 (2)
C240.060 (3)0.063 (3)0.084 (3)0.012 (2)0.002 (3)−0.014 (3)
C110.095 (4)0.095 (4)0.062 (3)−0.029 (3)0.014 (3)0.023 (3)
C150.078 (4)0.066 (3)0.046 (2)0.009 (3)0.003 (2)0.009 (2)
C100.102 (5)0.129 (5)0.048 (3)−0.047 (4)0.032 (3)−0.002 (3)
C120.068 (3)0.066 (3)0.061 (3)−0.011 (2)0.011 (2)0.014 (2)
C200.055 (3)0.063 (3)0.094 (3)−0.007 (2)0.015 (3)−0.028 (3)
C90.086 (4)0.102 (4)0.074 (3)−0.020 (3)0.044 (3)−0.021 (3)
C260.147 (7)0.118 (5)0.129 (6)0.040 (5)0.076 (5)0.056 (4)
C250.118 (6)0.096 (4)0.060 (3)0.033 (5)0.022 (4)0.022 (3)

Geometric parameters (Å, °)

Cu1—N12.066 (3)C8—C71.392 (6)
Cu1—P12.2388 (11)C8—H80.9300
Cu1—I1i2.6603 (9)C7—C121.376 (6)
Cu1—Cu1i2.8293 (12)C4—C51.376 (5)
P1—C131.823 (4)C4—H40.9300
P1—C191.830 (4)C19—C241.378 (5)
P1—C71.831 (4)C19—C201.384 (6)
N1—C11.333 (4)C16—C171.374 (6)
N1—C51.338 (4)C16—C151.378 (6)
N2—N3ii1.327 (4)C16—H160.9300
N2—C61.333 (5)C5—H50.9300
N3—N2ii1.327 (4)C17—C181.395 (5)
N3—C61.349 (4)C17—H170.9300
N4—C251.102 (8)C18—H180.9300
C6—C31.476 (5)C14—C151.386 (6)
C13—C181.382 (5)C14—H140.9300
C13—C141.393 (5)C24—H240.9300
C2—C11.378 (5)C11—C101.361 (8)
C2—C31.378 (5)C11—C121.387 (6)
C2—H20.9300C11—H110.9300
C23—C221.372 (8)C15—H150.9300
C23—C241.385 (6)C10—C91.368 (7)
C23—H230.9300C10—H100.9300
C22—C211.376 (8)C12—H120.9300
C22—H220.9300C20—H200.9300
C21—C201.373 (6)C9—H90.9300
C21—H210.9300C26—C251.460 (9)
C3—C41.387 (5)C26—H26A0.9600
C1—H10.9300C26—H26B0.9600
C8—C91.374 (6)C26—H26C0.9600
Cu1—I1—Cu1i64.51 (3)C8—C7—P1118.6 (3)
N1—Cu1—P1112.29 (9)C5—C4—C3119.0 (4)
N1—Cu1—I1104.81 (9)C5—C4—H4120.5
P1—Cu1—I1113.43 (3)C3—C4—H4120.5
N1—Cu1—I1i103.87 (8)C24—C19—C20119.0 (4)
P1—Cu1—I1i106.64 (4)C24—C19—P1117.0 (3)
I1—Cu1—I1i115.49 (3)C20—C19—P1123.9 (3)
N1—Cu1—Cu1i117.65 (9)C17—C16—C15120.8 (4)
P1—Cu1—Cu1i129.83 (4)C17—C16—H16119.6
I1—Cu1—Cu1i58.07 (3)C15—C16—H16119.6
I1i—Cu1—Cu1i57.42 (3)N1—C5—C4123.9 (3)
C13—P1—C19105.43 (17)N1—C5—H5118.1
C13—P1—C7104.18 (18)C4—C5—H5118.1
C19—P1—C7103.94 (19)C16—C17—C18119.0 (4)
C13—P1—Cu1114.42 (13)C16—C17—H17120.5
C19—P1—Cu1116.59 (13)C18—C17—H17120.5
C7—P1—Cu1111.05 (12)C13—C18—C17121.4 (4)
C1—N1—C5116.3 (3)C13—C18—H18119.3
C1—N1—Cu1122.1 (2)C17—C18—H18119.3
C5—N1—Cu1120.8 (2)C15—C14—C13120.8 (4)
N3ii—N2—C6117.8 (3)C15—C14—H14119.6
N2ii—N3—C6117.0 (3)C13—C14—H14119.6
N2—C6—N3125.2 (3)C19—C24—C23120.3 (5)
N2—C6—C3117.7 (3)C19—C24—H24119.8
N3—C6—C3117.0 (3)C23—C24—H24119.8
C18—C13—C14118.3 (3)C10—C11—C12120.7 (5)
C18—C13—P1124.4 (3)C10—C11—H11119.7
C14—C13—P1117.3 (3)C12—C11—H11119.7
C1—C2—C3119.3 (3)C16—C15—C14119.7 (4)
C1—C2—H2120.4C16—C15—H15120.1
C3—C2—H2120.4C14—C15—H15120.1
C22—C23—C24119.8 (5)C11—C10—C9119.7 (5)
C22—C23—H23120.1C11—C10—H10120.1
C24—C23—H23120.1C9—C10—H10120.1
C23—C22—C21120.4 (5)C7—C12—C11120.5 (5)
C23—C22—H22119.8C7—C12—H12119.7
C21—C22—H22119.8C11—C12—H12119.7
C20—C21—C22119.7 (5)C21—C20—C19120.8 (5)
C20—C21—H21120.2C21—C20—H20119.6
C22—C21—H21120.2C19—C20—H20119.6
C2—C3—C4117.6 (3)C10—C9—C8120.1 (5)
C2—C3—C6121.5 (3)C10—C9—H9120.0
C4—C3—C6120.9 (3)C8—C9—H9120.0
N1—C1—C2123.9 (4)C25—C26—H26A109.5
N1—C1—H1118.1C25—C26—H26B109.5
C2—C1—H1118.1H26A—C26—H26B109.5
C9—C8—C7121.1 (5)C25—C26—H26C109.5
C9—C8—H8119.4H26A—C26—H26C109.5
C7—C8—H8119.4H26B—C26—H26C109.5
C12—C7—C8117.9 (4)N4—C25—C26177.2 (8)
C12—C7—P1122.9 (3)

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2071).

References

  • Banerjee, Ra., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M. & Yaghi O. M. (2008). Science, 319, 939–943. [PubMed]
  • Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [PubMed]
  • Rigaku (2007). CrystalClear Rigaku Corp., Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P. & Schroder, M. (2000). J. Am. Chem. Soc.122, 4044–4046.
  • Zhang, C., Song, Y. L. & Wang, X. (2007). Coord. Chem. Rev.251, 111–141.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography