PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2322.
Published online 2010 August 18. doi:  10.1107/S1600536810031764
PMCID: PMC3008142

4-Phenyl-2,6-bis­(4-tol­yl)pyridine

Abstract

The title mol­ecule, C25H21N, situated on the crystallographic twofold axis has a symmetry point group 2. The inter­planar angles between the central pyridyl ring and the phenyl and the methyl­phenyl rings are 32.8 (2) and 23.7 (2)°, respectively. In the crystal packing, the central pyridyl rings of adjacent mol­ecules are involved in π–π inter­actions, forming one-dimensional arrays along the c axis with centroid–centroid distances of 3.714 (1) Å.

Related literature

For the synthesis of Kröhnke-type pyridines, see: Cave & Raston (2001 [triangle]); Kröhnke (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2322-scheme1.jpg

Experimental

Crystal data

  • C25H21N
  • M r = 335.43
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2322-efi1.jpg
  • a = 21.234 (3) Å
  • b = 12.0489 (15) Å
  • c = 7.3601 (10) Å
  • V = 1883.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 K
  • 0.24 × 0.16 × 0.14 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.984, T max = 0.991
  • 6295 measured reflections
  • 1833 independent reflections
  • 1130 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.179
  • S = 1.02
  • 1833 reflections
  • 121 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031764/fb2207sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031764/fb2207Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by grants from the fundamental research projects of natural science of Shaanxi Province (Nos. 2010K14-02-23) and the scientific research plan projects of Shaanxi Education Department (Nos. 09JK837).

supplementary crystallographic information

Comment

The Kröhnke type pyridines with different substituents as well as their syntheses have been widely studied. The reason is a prominent functionalization of the Kröhnke type pyridines as building blocks in both organic and inorganic supramolecular chemistry (Cave & Raston, 2001; Kröhnke, 1976). In this article, the synthesis and the crystal structure of a new Kröhnke type pyridine compound, 4-phenyl-2,6-bis-(4-tolyl)-pyridine, is presented.

The title molecule shows symmetry 2. The two-fold axis passes through the central pyridine N1, C10, C11, C14 and H14 atoms (Fig. 1). The interplanar angle between central pyridyl ring (N1—C10) and the phenyl ring (C11—C14) is 32.8 (2)°, while the interplanar angle between the central pyridyl ring and methylphenyl ring (C2—C7) equals to 23.7 (2)°. The central pyridyl rings of the adjacent molecules are connected by intermolecular π-electron ring···π-electron ring interactions to form one-dimensional arrays along the c axis. The pertinent centroid-to-centroid distances equal to 3.714 (1) Å (Fig. 2). The centroid coordinates are 0.00000 (3), 0.52074 (7), 0.25000 (7) (Spek, 2009).

Experimental

The mixture of benzaldehyde (1.06 g, 10 mmol), 4-methylacetophenone (2.68 g, 20 mmol) and NaOH (0.80 g, 20 mmol) in water (20 ml) and 95% ethanol (20 ml) was stirred for 3 h at room temperature, then the solution of ammonium acetate (7.70 g, 100 mmol) in 95% ethanol (60 ml) was added, and further refluxed at 343 K for 8 h. The resulting solution was cooled, solvent reduced to 20 ml to give a white precipitate which was collected by filtration and washed with ethanol. Recrystallization from 95% ethanol gave colorless prism crystals of the title compound with sizes of about 2.0 × 0.5 × 0.1 mm. Yield: 0.41 g (12%).

Refinement

All the hydrogens were observable in the difference electron density map. However, they were placed into the idealized positions and refined using a riding atom formalism. C-Haryl=0.93Å, C-Hmethyl=0.96 Å. Uiso(Haryl)=1.2Ueq(Caryl); Uiso(Hmethyl)=1.5Ueq(Cmethyl).

Figures

Fig. 1.
The title molecule with displacement ellipsoids drawn at the 30% probability level. The H atoms are shown as spheres of arbitrary radii. The atoms labelled by "A" are related to their counterparts by the rotation by 180° about the crystallographic ...
Fig. 2.
Packing diagram of the title compound showing the intermolecular π-electron ring···π-electron ring interactions as dashed lines. The H atoms have been omitted for clarity.

Crystal data

C25H21NF(000) = 712
Mr = 335.43Dx = 1.183 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 1019 reflections
a = 21.234 (3) Åθ = 2.6–23.3°
b = 12.0489 (15) ŵ = 0.07 mm1
c = 7.3601 (10) ÅT = 295 K
V = 1883.1 (4) Å3Prism, colourless
Z = 40.24 × 0.16 × 0.14 mm

Data collection

Bruker SMART APEX area-detector diffractometer1833 independent reflections
Radiation source: fine-focus sealed tube1130 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −26→26
Tmin = 0.984, Tmax = 0.991k = −14→12
6295 measured reflectionsl = −9→2

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: difference Fourier map
wR(F2) = 0.179H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.091P)2 + 0.1078P] where P = (Fo2 + 2Fc2)/3
1833 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.12 e Å3
41 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.00000.63606 (17)0.25000.0650 (6)
C10.28100 (10)0.8434 (2)0.3583 (5)0.1274 (12)
H1A0.31710.79580.34740.191*
H1B0.28110.87800.47580.191*
H1C0.28260.89940.26570.191*
C20.22150 (10)0.7754 (2)0.3362 (4)0.0965 (8)
C30.16260 (9)0.81731 (18)0.3759 (4)0.0895 (8)
H30.15910.88990.41790.107*
C40.10883 (9)0.75416 (17)0.3549 (3)0.0778 (6)
H40.06990.78470.38360.093*
C50.11203 (8)0.64629 (16)0.2921 (3)0.0686 (6)
C60.17095 (9)0.6050 (2)0.2485 (4)0.0993 (9)
H60.17470.53310.20360.119*
C70.22435 (10)0.6695 (2)0.2710 (5)0.1153 (11)
H70.26340.63970.24070.138*
C80.05366 (8)0.57880 (17)0.2701 (2)0.0637 (5)
C90.05510 (8)0.46379 (17)0.2715 (2)0.0670 (6)
H90.09320.42700.28700.080*
C100.00000.4032 (2)0.25000.0640 (7)
C110.00000.2803 (2)0.25000.0657 (7)
C120.04268 (9)0.22100 (17)0.3546 (3)0.0748 (6)
H120.07180.25900.42570.090*
C130.04258 (10)0.10657 (18)0.3546 (3)0.0882 (7)
H130.07150.06820.42570.106*
C140.00000.0489 (3)0.25000.0930 (10)
H140.0000−0.02830.25000.112*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0574 (12)0.0664 (14)0.0710 (15)0.000−0.0003 (10)0.000
C10.0739 (15)0.116 (2)0.193 (4)−0.0204 (13)−0.0066 (18)−0.0032 (19)
C20.0660 (14)0.0832 (17)0.140 (2)−0.0064 (12)−0.0059 (13)0.0046 (15)
C30.0723 (15)0.0760 (14)0.120 (2)−0.0075 (11)0.0012 (12)−0.0090 (13)
C40.0614 (12)0.0758 (14)0.0961 (15)0.0008 (10)0.0040 (10)−0.0063 (12)
C50.0567 (11)0.0685 (12)0.0805 (13)0.0009 (9)−0.0014 (9)0.0057 (10)
C60.0675 (14)0.0712 (14)0.159 (3)0.0068 (11)0.0054 (13)−0.0035 (15)
C70.0545 (13)0.0880 (18)0.203 (3)0.0053 (11)0.0060 (15)0.0033 (18)
C80.0615 (11)0.0672 (13)0.0624 (12)0.0011 (9)0.0022 (8)0.0008 (9)
C90.0631 (12)0.0688 (13)0.0692 (12)0.0039 (8)−0.0005 (8)0.0019 (10)
C100.0687 (16)0.0654 (17)0.0578 (16)0.0000.0033 (12)0.000
C110.0651 (16)0.0657 (17)0.0664 (17)0.0000.0108 (12)0.000
C120.0748 (13)0.0701 (13)0.0795 (14)0.0034 (10)0.0063 (10)0.0007 (11)
C130.0885 (15)0.0759 (15)0.1001 (19)0.0089 (12)0.0109 (12)0.0086 (13)
C140.105 (2)0.0607 (18)0.114 (3)0.0000.025 (2)0.000

Geometric parameters (Å, °)

N1—C81.340 (2)C6—H60.9300
N1—C8i1.340 (2)C7—H70.9300
C1—C21.515 (3)C8—C91.386 (3)
C1—H1A0.9600C9—C101.388 (2)
C1—H1B0.9600C9—H90.9300
C1—H1C0.9600C10—C9i1.388 (2)
C2—C71.365 (3)C10—C111.480 (4)
C2—C31.380 (3)C11—C121.387 (2)
C3—C41.381 (3)C11—C12i1.387 (2)
C3—H30.9300C12—C131.379 (3)
C4—C51.381 (3)C12—H120.9300
C4—H40.9300C13—C141.376 (3)
C5—C61.384 (3)C13—H130.9300
C5—C81.491 (2)C14—C13i1.376 (3)
C6—C71.384 (3)C14—H140.9300
C8—N1—C8i118.0 (2)C2—C7—H7119.0
C2—C1—H1A109.5C6—C7—H7119.0
C2—C1—H1B109.5N1—C8—C9122.30 (17)
H1A—C1—H1B109.5N1—C8—C5115.96 (18)
C2—C1—H1C109.5C9—C8—C5121.73 (16)
H1A—C1—H1C109.5C8—C9—C10120.43 (18)
H1B—C1—H1C109.5C8—C9—H9119.8
C7—C2—C3117.2 (2)C10—C9—H9119.8
C7—C2—C1120.4 (2)C9—C10—C9i116.5 (2)
C3—C2—C1122.3 (2)C9—C10—C11121.74 (12)
C2—C3—C4121.6 (2)C9i—C10—C11121.74 (12)
C2—C3—H3119.2C12—C11—C12i118.0 (3)
C4—C3—H3119.2C12—C11—C10121.01 (13)
C3—C4—C5121.02 (19)C12i—C11—C10121.01 (13)
C3—C4—H4119.5C13—C12—C11120.9 (2)
C5—C4—H4119.5C13—C12—H12119.5
C4—C5—C6117.42 (19)C11—C12—H12119.5
C4—C5—C8120.58 (17)C14—C13—C12120.4 (2)
C6—C5—C8122.0 (2)C14—C13—H13119.8
C5—C6—C7120.7 (2)C12—C13—H13119.8
C5—C6—H6119.6C13—C14—C13i119.3 (3)
C7—C6—H6119.6C13—C14—H14120.4
C2—C7—C6122.0 (2)C13i—C14—H14120.4
C7—C2—C3—C41.5 (4)C4—C5—C8—C9−156.5 (2)
C1—C2—C3—C4180.0 (2)C6—C5—C8—C924.5 (3)
C2—C3—C4—C5−0.4 (4)N1—C8—C9—C100.7 (2)
C3—C4—C5—C6−1.0 (3)C5—C8—C9—C10−179.76 (15)
C3—C4—C5—C8179.96 (19)C8—C9—C10—C9i−0.31 (12)
C4—C5—C6—C71.2 (4)C8—C9—C10—C11179.69 (12)
C8—C5—C6—C7−179.8 (2)C9—C10—C11—C1232.62 (13)
C3—C2—C7—C6−1.3 (4)C9i—C10—C11—C12−147.38 (13)
C1—C2—C7—C6−179.8 (3)C9—C10—C11—C12i−147.38 (13)
C5—C6—C7—C20.0 (5)C9i—C10—C11—C12i32.62 (12)
C8i—N1—C8—C9−0.33 (12)C12i—C11—C12—C13−0.07 (14)
C8i—N1—C8—C5−179.93 (18)C10—C11—C12—C13179.93 (14)
C4—C5—C8—N123.1 (3)C11—C12—C13—C140.1 (3)
C6—C5—C8—N1−155.9 (2)C12—C13—C14—C13i−0.07 (14)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2207).

References

  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cave, G. W. V. & Raston, C. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3258–3264.
  • Kröhnke, F. (1976). Synthesis, pp. 1–24.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography