PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1049–m1050.
Published online 2010 August 4. doi:  10.1107/S1600536810030187
PMCID: PMC3008138

Tetra-μ-acetato-κ8 O:O′-bis­{[N-(4-chloro­phen­yl)-4-methyl­pyridin-2-amine-κN 1]copper(II)}

Abstract

In the crystal structure of the title complex, [Cu2(CH3COO)4(C12H11ClN2)2], the complete binuclear mol­ecule is generated by a crystallographic centre of inversion; the four acetate groups each bridge a pair of CuII atoms. The coordination of the metal atom is distorted octa­hedral within a donor set defined by four O atoms, the heterocyclic N atom and the second Cu atom. The pyridine ring is twisted with respect to the benzene ring, forming a dihedral angle of 33.9 (2)°. An intra­molecular N—H(...)O hydrogen bond is present between the amino group and a carboxyl O atom. Inter­molecular inter­actions of the C—H(...)π type link mol­ecules in the crystal structure.

Related literature

For examples of tetra­kis­acetato­bis­[(substituted 2-amino­pyrid­yl)copper] complexes, see: Barquín et al. (2004 [triangle]); Seco et al. (2004 [triangle]); Sieroń (2004 [triangle]); Fairuz et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1049-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C2H3O2)4(C12H11ClN2)2]
  • M r = 800.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1049-efi1.jpg
  • a = 11.7430 (17) Å
  • b = 15.619 (2) Å
  • c = 9.9866 (14) Å
  • β = 109.901 (2)°
  • V = 1722.3 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.45 mm−1
  • T = 296 K
  • 0.35 × 0.25 × 0.05 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.632, T max = 0.931
  • 11432 measured reflections
  • 3951 independent reflections
  • 2460 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.151
  • S = 1.04
  • 3951 reflections
  • 224 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.77 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030187/hb5589sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030187/hb5589Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Z. Abullulah thanks the Ministry of Higher Education, Malaysia, for research grants (RG027/09AFR and PS374/2009B). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

The binuclear title complex, (I), was studied in connection with the structural characterization of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Barquín et al., 2004; Seco et al., 2004; Sieroń, 2004; Fairuz et al., 2009). The binuclear copper(II) complex, Fig. 1, is situated about a centre of inversion and features two Cu atoms bridged by four acetate groups. The Cu–O bond distances lie in the experimentally equivalent range 1.967 (3) to 1.984 (3) Å, Table 1. The coordination environment for each Cu atom is completed by a N atom derived from the N-4-chloroanilino-4-picoline ligand and the second Cu atom [Cu···Cui = 2.6431 (10) Å]. The resulting hexa-coordinated geometry is based on an octahedron. An intramolecular N1–H···O4 interaction is noted, Table 2. The N-heterocycle is non-planar with the dihedral angle formed between the pyridine and benzene rings being 33.9 (2) °. The major twist in the molecule occurs around the amine group as seen in the value of the C9–N2–C11–C12 torsion angle of 24.1 (8) °. The most obvious intermolecular contact operating in the crystal structure is of the type C–H···π and occurs between methyl-H and pyridine rings, Table 2. These link complex molecules that stack in columns along the a axis, Fig. 2.

Experimental

A mixture of N-(4-chlorophenyl)-4-methylpyridin-2-amine (0.2408 g, 1.1 mmol) in acetonitrile (15 ml) and trimethyl orthoformate (10 ml) was heated to 328 K. Copper acetate (0.1 g, 0.5 mmol) dissolved in acetonitrile (15 ml) was added drop wise to the ligand solution. The green solution was left at room temperature and green plates of (I) were collected after a few days.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.01 Å; the Uiso value was freely refined

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 35% probability level. Symmetry code: (i) 2–x, 1–y, 1–z.
Fig. 2.
Unit-cell contents shown in projection down the a axis in (I). The C–H···π contacts are shown as purple dashed lines.

Crystal data

[Cu2(C2H3O2)4(C12H11ClN2)2]F(000) = 820
Mr = 800.61Dx = 1.544 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2098 reflections
a = 11.7430 (17) Åθ = 2.5–23.4°
b = 15.619 (2) ŵ = 1.45 mm1
c = 9.9866 (14) ÅT = 296 K
β = 109.901 (2)°Plate, green
V = 1722.3 (4) Å30.35 × 0.25 × 0.05 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer3951 independent reflections
Radiation source: fine-focus sealed tube2460 reflections with I > 2σ(I)
graphiteRint = 0.065
ω scanθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→13
Tmin = 0.632, Tmax = 0.931k = −19→20
11432 measured reflectionsl = −11→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.064P)2 + 1.063P] where P = (Fo2 + 2Fc2)/3
3951 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.49 e Å3
1 restraintΔρmin = −0.77 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.92999 (4)0.47727 (4)0.57325 (5)0.03790 (19)
Cl10.17644 (11)0.30281 (12)0.10013 (15)0.0756 (5)
N10.8173 (3)0.4410 (2)0.7033 (3)0.0359 (8)
N20.6604 (3)0.3905 (3)0.5143 (4)0.0514 (11)
H20.712 (3)0.386 (3)0.472 (4)0.054 (14)*
O10.9185 (3)0.5697 (2)0.2909 (3)0.0520 (8)
O20.7991 (2)0.5312 (2)0.4143 (3)0.0526 (9)
O31.0247 (3)0.4097 (2)0.3375 (3)0.0502 (8)
O40.9027 (3)0.3711 (2)0.4573 (4)0.0539 (9)
C10.8177 (4)0.5643 (3)0.3087 (5)0.0424 (10)
C20.7092 (4)0.6009 (4)0.1941 (5)0.0656 (15)
H2A0.63750.57130.19390.098*
H2B0.71910.59420.10320.098*
H2C0.70180.66070.21220.098*
C30.9545 (3)0.3572 (3)0.3661 (4)0.0408 (10)
C40.9312 (4)0.2732 (3)0.2895 (5)0.0569 (13)
H4A0.88690.23650.33120.085*
H4B1.00700.24680.29710.085*
H4C0.88490.28250.19090.085*
C50.8690 (4)0.4552 (3)0.8442 (5)0.0490 (12)
H50.94570.47980.87640.059*
C60.8160 (4)0.4360 (4)0.9428 (5)0.0531 (13)
H60.85550.44741.03880.064*
C70.7010 (4)0.3986 (3)0.8961 (4)0.0456 (11)
C80.6464 (3)0.3833 (3)0.7531 (4)0.0417 (11)
H80.57000.35840.71930.050*
C90.7059 (3)0.4054 (3)0.6584 (4)0.0350 (9)
C100.6402 (5)0.3728 (4)1.0011 (5)0.0710 (17)
H10A0.58330.41621.00440.107*
H10B0.70020.36621.09390.107*
H10C0.59840.31950.97180.107*
C110.5429 (3)0.3694 (3)0.4227 (4)0.0375 (10)
C120.4356 (4)0.3881 (3)0.4500 (4)0.0414 (10)
H120.44000.41490.53470.050*
C130.3230 (4)0.3668 (3)0.3517 (5)0.0447 (11)
H130.25260.37760.37170.054*
C140.3172 (4)0.3294 (3)0.2243 (5)0.0436 (11)
C150.4220 (4)0.3123 (3)0.1936 (5)0.0500 (12)
H150.41710.28770.10700.060*
C160.5334 (4)0.3321 (3)0.2928 (5)0.0474 (12)
H160.60340.32020.27250.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0227 (2)0.0514 (4)0.0388 (3)−0.0041 (2)0.00946 (19)0.0002 (3)
Cl10.0348 (6)0.1143 (13)0.0618 (8)−0.0131 (7)−0.0044 (5)−0.0148 (8)
N10.0246 (15)0.050 (2)0.0316 (17)−0.0048 (15)0.0081 (13)−0.0007 (16)
N20.0275 (17)0.091 (3)0.037 (2)−0.021 (2)0.0132 (15)−0.011 (2)
O10.0338 (15)0.075 (2)0.0466 (18)0.0082 (16)0.0124 (14)0.0134 (17)
O20.0260 (14)0.080 (3)0.0495 (18)0.0036 (15)0.0100 (13)0.0128 (17)
O30.0449 (17)0.058 (2)0.0533 (19)−0.0118 (16)0.0234 (15)−0.0082 (16)
O40.0485 (18)0.058 (2)0.064 (2)−0.0131 (16)0.0299 (17)−0.0089 (17)
C10.031 (2)0.049 (3)0.043 (2)0.001 (2)0.0071 (18)−0.005 (2)
C20.043 (3)0.085 (4)0.056 (3)0.023 (3)0.002 (2)0.010 (3)
C30.0264 (18)0.050 (3)0.041 (2)−0.0003 (19)0.0048 (17)−0.003 (2)
C40.053 (3)0.052 (3)0.061 (3)−0.012 (2)0.013 (2)−0.008 (3)
C50.033 (2)0.074 (4)0.039 (2)−0.017 (2)0.0113 (18)−0.007 (2)
C60.042 (2)0.081 (4)0.036 (2)−0.017 (3)0.0125 (19)−0.011 (2)
C70.033 (2)0.069 (3)0.036 (2)−0.004 (2)0.0133 (17)0.005 (2)
C80.0242 (18)0.059 (3)0.041 (2)−0.0074 (19)0.0093 (17)0.006 (2)
C90.0247 (17)0.043 (3)0.033 (2)−0.0035 (17)0.0049 (15)0.0015 (18)
C100.051 (3)0.121 (5)0.045 (3)−0.016 (3)0.021 (2)0.005 (3)
C110.0256 (18)0.049 (3)0.035 (2)−0.0080 (18)0.0068 (16)0.0046 (19)
C120.033 (2)0.054 (3)0.037 (2)−0.002 (2)0.0110 (18)−0.004 (2)
C130.0257 (19)0.056 (3)0.050 (3)0.005 (2)0.0102 (18)0.003 (2)
C140.030 (2)0.051 (3)0.044 (2)−0.004 (2)0.0039 (17)−0.001 (2)
C150.039 (2)0.065 (3)0.041 (2)0.000 (2)0.0069 (19)−0.006 (2)
C160.030 (2)0.073 (4)0.040 (2)−0.004 (2)0.0140 (18)−0.001 (2)

Geometric parameters (Å, °)

Cu1—O3i1.967 (3)C4—H4B0.9600
Cu1—O1i1.975 (3)C4—H4C0.9600
Cu1—O21.983 (3)C5—C61.366 (6)
Cu1—O41.984 (3)C5—H50.9300
Cu1—N12.220 (3)C6—C71.397 (6)
Cu1—Cu1i2.6431 (10)C6—H60.9300
Cl1—C141.745 (4)C7—C81.373 (6)
N1—C91.350 (5)C7—C101.511 (6)
N1—C51.348 (5)C8—C91.397 (5)
N2—C91.373 (5)C8—H80.9300
N2—C111.411 (5)C10—H10A0.9600
N2—H20.85 (4)C10—H10B0.9600
O1—C11.258 (5)C10—H10C0.9600
O1—Cu1i1.975 (3)C11—C161.392 (6)
O2—C11.259 (5)C11—C121.407 (6)
O3—C31.262 (5)C12—C131.393 (5)
O3—Cu1i1.967 (3)C12—H120.9300
O4—C31.274 (5)C13—C141.380 (6)
C1—C21.506 (6)C13—H130.9300
C2—H2A0.9600C14—C151.392 (6)
C2—H2B0.9600C15—C161.381 (6)
C2—H2C0.9600C15—H150.9300
C3—C41.497 (6)C16—H160.9300
C4—H4A0.9600
O3i—Cu1—O1i88.89 (14)H4A—C4—H4C109.5
O3i—Cu1—O289.88 (14)H4B—C4—H4C109.5
O1i—Cu1—O2168.34 (12)N1—C5—C6124.2 (4)
O3i—Cu1—O4168.17 (12)N1—C5—H5117.9
O1i—Cu1—O491.08 (15)C6—C5—H5117.9
O2—Cu1—O487.76 (14)C5—C6—C7118.5 (4)
O3i—Cu1—N195.02 (13)C5—C6—H6120.7
O1i—Cu1—N194.59 (12)C7—C6—H6120.7
O2—Cu1—N197.06 (12)C8—C7—C6118.4 (4)
O4—Cu1—N196.77 (13)C8—C7—C10120.8 (4)
O3i—Cu1—Cu1i83.47 (9)C6—C7—C10120.8 (4)
O1i—Cu1—Cu1i84.00 (9)C7—C8—C9119.8 (4)
O2—Cu1—Cu1i84.35 (9)C7—C8—H8120.1
O4—Cu1—Cu1i84.76 (9)C9—C8—H8120.1
N1—Cu1—Cu1i177.94 (9)N1—C9—N2113.9 (3)
C9—N1—C5117.2 (3)N1—C9—C8121.9 (3)
C9—N1—Cu1127.9 (3)N2—C9—C8124.2 (4)
C5—N1—Cu1115.0 (3)C7—C10—H10A109.5
C9—N2—C11131.6 (3)C7—C10—H10B109.5
C9—N2—H2116 (3)H10A—C10—H10B109.5
C11—N2—H2111 (3)C7—C10—H10C109.5
C1—O1—Cu1i123.3 (3)H10A—C10—H10C109.5
C1—O2—Cu1122.5 (3)H10B—C10—H10C109.5
C3—O3—Cu1i125.2 (3)C16—C11—N2116.9 (4)
C3—O4—Cu1122.5 (3)C16—C11—C12118.3 (4)
O1—C1—O2125.9 (4)N2—C11—C12124.6 (4)
O1—C1—C2117.4 (4)C13—C12—C11120.8 (4)
O2—C1—C2116.7 (4)C13—C12—H12119.6
C1—C2—H2A109.5C11—C12—H12119.6
C1—C2—H2B109.5C14—C13—C12119.2 (4)
H2A—C2—H2B109.5C14—C13—H13120.4
C1—C2—H2C109.5C12—C13—H13120.4
H2A—C2—H2C109.5C13—C14—C15120.9 (4)
H2B—C2—H2C109.5C13—C14—Cl1119.6 (3)
O3—C3—O4123.9 (4)C15—C14—Cl1119.5 (3)
O3—C3—C4118.2 (4)C16—C15—C14119.5 (4)
O4—C3—C4117.8 (4)C16—C15—H15120.3
C3—C4—H4A109.5C14—C15—H15120.3
C3—C4—H4B109.5C15—C16—C11121.2 (4)
H4A—C4—H4B109.5C15—C16—H16119.4
C3—C4—H4C109.5C11—C16—H16119.4
O3i—Cu1—N1—C9134.2 (4)Cu1—N1—C5—C6−178.7 (4)
O1i—Cu1—N1—C9−136.5 (4)N1—C5—C6—C70.3 (8)
O2—Cu1—N1—C943.7 (4)C5—C6—C7—C8−0.3 (8)
O4—Cu1—N1—C9−44.9 (4)C5—C6—C7—C10177.6 (5)
O3i—Cu1—N1—C5−47.1 (3)C6—C7—C8—C9−0.2 (7)
O1i—Cu1—N1—C542.2 (3)C10—C7—C8—C9−178.1 (5)
O2—Cu1—N1—C5−137.6 (3)C5—N1—C9—N2−178.3 (4)
O4—Cu1—N1—C5133.8 (3)Cu1—N1—C9—N20.4 (6)
O3i—Cu1—O2—C184.2 (4)C5—N1—C9—C8−0.6 (6)
O1i—Cu1—O2—C10.3 (9)Cu1—N1—C9—C8178.0 (3)
O4—Cu1—O2—C1−84.2 (4)C11—N2—C9—N1−167.2 (5)
N1—Cu1—O2—C1179.2 (4)C11—N2—C9—C815.3 (8)
Cu1i—Cu1—O2—C10.8 (4)C7—C8—C9—N10.7 (7)
O3i—Cu1—O4—C37.9 (9)C7—C8—C9—N2178.1 (5)
O1i—Cu1—O4—C3−81.8 (3)C9—N2—C11—C16−159.9 (5)
O2—Cu1—O4—C386.6 (3)C9—N2—C11—C1224.1 (8)
N1—Cu1—O4—C3−176.6 (3)C16—C11—C12—C132.3 (7)
Cu1i—Cu1—O4—C32.0 (3)N2—C11—C12—C13178.3 (4)
Cu1i—O1—C1—O22.0 (7)C11—C12—C13—C14−2.1 (7)
Cu1i—O1—C1—C2−178.3 (3)C12—C13—C14—C150.5 (7)
Cu1—O2—C1—O1−1.8 (7)C12—C13—C14—Cl1−179.8 (4)
Cu1—O2—C1—C2178.5 (3)C13—C14—C15—C160.8 (8)
Cu1i—O3—C3—O40.4 (6)Cl1—C14—C15—C16−178.9 (4)
Cu1i—O3—C3—C4−179.1 (3)C14—C15—C16—C11−0.5 (8)
Cu1—O4—C3—O3−2.1 (6)N2—C11—C16—C15−177.3 (4)
Cu1—O4—C3—C4177.4 (3)C12—C11—C16—C15−1.0 (7)
C9—N1—C5—C60.1 (7)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.85 (4)2.30 (2)3.101 (5)156 (4)
C4—H4a···Cg1ii0.962.833.650 (5)144

Symmetry codes: (ii) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5589).

References

  • Barquín, M., González Garmendia, M. J., Pacheco, S., Pinilla, E., Quintela, S., Seco, J. M. & Torres, M. R. (2004). Inorg. Chim. Acta, 357, 3230–3236.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fairuz, Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, m1690. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Seco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457–464.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sieroń, L. (2004). Acta Cryst. E60, m577–m578.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography