PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2423.
Published online 2010 August 28. doi:  10.1107/S1600536810034185
PMCID: PMC3008136

Salicyl­aldehyde–4-(dimethyl­amino)­pyridine (1/1)

Abstract

In the title compound, C7H10N2·C7H6O2, the components are linked by an O—H(...)N hydrogen bond. The mean planes of two mol­ecules form a dihedral angle of 78.68 (5)°. The crystal packing exhibits weak non-classical C—H(...)O contacts.

Related literature

For background to hydrogen bonding in crystal engineering, see: Bosch (2010 [triangle]); Desiraju (1989 [triangle]); Lehn (1995 [triangle]). For related structures, see: Bosch (2010 [triangle]); Vembu et al. (2003 [triangle]); Lo & Ng (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2423-scheme1.jpg

Experimental

Crystal data

  • C7H10N2·C7H6O2
  • M r = 244.29
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2423-efi1.jpg
  • a = 7.540 (3) Å
  • b = 8.473 (3) Å
  • c = 10.413 (4) Å
  • α = 85.370 (11)°
  • β = 77.371 (10)°
  • γ = 87.203 (10)°
  • V = 646.7 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.4 × 0.4 × 0.38 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.967, T max = 0.968
  • 4199 measured reflections
  • 2913 independent reflections
  • 1882 reflections with I > 2σ(I)
  • R int = 0.02

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.163
  • S = 1.01
  • 2913 reflections
  • 166 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034185/cv2756sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034185/cv2756Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Research Funds from the Faculty of Science (A1B1), the Thailand Research Fund (RSA4680016) to NM, and the Thai Government Stimulus Package 2 (TKK2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agrigulture and Center for Petroleum Petrochemicals and Advanced Materials.

supplementary crystallographic information

Comment

Hydrogen bonding is the most important and the essential tool for both crystal engineering and supramolecular chemistry (Bosch, 2010; Desiraju, 1989 & Lehn, 1995). The non-classical C—H···N hydrogen bonds in pyridine and pyrimidine derivatives have remarkable potentials and patterns (Bosch, 2010; Desiraju, 1989; Lehn, 1995; Lo & Ng, 2009 & Vembu et al., 2003;). In order to investigate the hydrogen bonding patterns of 4-(dimethylamino)pyridine, the co-crystals with various derivatives of benzaldehyde were prepared.

We report here the structure of the title co-crystal compound (Fig.1), formed from salicylaldehyde and 4-(dimethylamino)pyridine. The asymmetric unit contains one molecule of salicylaldehyde and one molecule of 4-(dimethylamino)pyridine linked by O—H···N hydrogen bond (Table 1). The mean planes of two molecules form a dihedral angle of 78.68 (5)°. The crystal packing exhibits weak non-classical C—H···O contacts (Table 1).

Experimental

The title cocrystal was crystallized by slow evaporation from the refluxed mixture of an equimolar solution of salicylaldehyde and 4-(dimethylamino)pyridine in a solution of methanol.

Refinement

All H-atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å (aromatic), 0.98 Å (CH3) and O–H = 0.82 Å, and Uiso(H) = 1.2Ueq (C) for aromatic and 1.5Ueq for O and Cmethyl.

Figures

Fig. 1.
The content of asymmetric unit of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as a dashed line.

Crystal data

C7H10N2·C7H6O2Z = 2
Mr = 244.29F(000) = 260
Triclinic, P1Dx = 1.255 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.540 (3) ÅCell parameters from 1563 reflections
b = 8.473 (3) Åθ = 2.8–27.8°
c = 10.413 (4) ŵ = 0.09 mm1
α = 85.370 (11)°T = 296 K
β = 77.371 (10)°Prism, yellow
γ = 87.203 (10)°0.4 × 0.4 × 0.38 mm
V = 646.7 (4) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer2913 independent reflections
Radiation source: Mo Kα1882 reflections with I > 2σ(I)
graphiteRint = 0.02
[var phi] and ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −10→9
Tmin = 0.967, Tmax = 0.968k = −5→11
4199 measured reflectionsl = −13→13

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049w = 1/[σ2(Fo2) + (0.0815P)2 + 0.0644P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.163(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.20 e Å3
2913 reflectionsΔρmin = −0.15 e Å3
166 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8429 (3)0.2372 (2)0.5097 (2)0.0720 (5)
H10.8680.14010.55130.086*
C20.7810 (3)0.3587 (2)0.58701 (17)0.0638 (5)
H20.76350.34220.67820.077*
C30.7433 (2)0.5084 (2)0.52993 (15)0.0521 (4)
C40.7680 (2)0.5182 (2)0.39168 (16)0.0604 (4)
H40.74260.61320.34690.072*
C50.8288 (3)0.3893 (3)0.32350 (18)0.0693 (5)
H50.84280.40030.23230.083*
C60.6562 (3)0.6217 (3)0.74452 (19)0.0879 (7)
H6A0.55480.55520.77950.132*
H6B0.62980.7250.7770.132*
H6C0.76240.57620.77170.132*
C70.6590 (3)0.7888 (3)0.5390 (2)0.0798 (6)
H7A0.76160.81310.46860.12*
H7B0.64450.86720.60240.12*
H7C0.55130.78850.50410.12*
C80.9510 (2)−0.18638 (19)0.10290 (14)0.0500 (4)
C90.8248 (3)−0.2663 (2)0.05460 (16)0.0603 (5)
H90.8641−0.35110.00290.072*
C100.6437 (3)−0.2223 (3)0.08184 (19)0.0724 (5)
H100.5604−0.27640.04930.087*
C110.5875 (3)−0.0964 (3)0.1584 (2)0.0754 (6)
H110.4652−0.0650.17630.09*
C120.7082 (2)−0.0158 (2)0.20895 (18)0.0654 (5)
H120.66690.06870.26050.078*
C130.8914 (2)−0.06070 (19)0.18288 (14)0.0515 (4)
C141.1435 (3)−0.2309 (2)0.06846 (17)0.0631 (5)
H141.2235−0.16690.09510.076*
N10.8703 (2)0.2475 (2)0.37777 (17)0.0724 (5)
N20.6887 (2)0.63491 (19)0.60206 (13)0.0636 (4)
O11.2084 (2)−0.34318 (19)0.00855 (16)0.0891 (5)
O21.01269 (17)0.01257 (16)0.23295 (13)0.0670 (4)
H2A0.9610.08440.27650.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0818 (13)0.0592 (12)0.0816 (13)−0.0101 (9)−0.0299 (10)−0.0061 (9)
C20.0763 (12)0.0654 (12)0.0532 (9)−0.0126 (9)−0.0203 (8)−0.0007 (8)
C30.0488 (8)0.0622 (11)0.0477 (8)−0.0119 (7)−0.0121 (7)−0.0073 (7)
C40.0678 (10)0.0654 (11)0.0503 (9)−0.0068 (8)−0.0163 (8)−0.0055 (8)
C50.0764 (12)0.0813 (15)0.0542 (10)−0.0080 (10)−0.0162 (9)−0.0188 (9)
C60.1038 (16)0.1054 (19)0.0546 (11)0.0003 (13)−0.0119 (10)−0.0232 (11)
C70.0877 (14)0.0677 (14)0.0813 (13)0.0053 (10)−0.0114 (11)−0.0126 (10)
C80.0633 (10)0.0484 (9)0.0393 (7)−0.0072 (7)−0.0137 (7)0.0023 (6)
C90.0776 (12)0.0578 (11)0.0483 (9)−0.0128 (8)−0.0154 (8)−0.0085 (7)
C100.0688 (12)0.0883 (15)0.0667 (11)−0.0241 (10)−0.0209 (9)−0.0136 (10)
C110.0588 (11)0.0952 (16)0.0755 (12)−0.0095 (10)−0.0163 (9)−0.0173 (11)
C120.0636 (11)0.0681 (12)0.0668 (11)−0.0022 (9)−0.0141 (8)−0.0187 (9)
C130.0615 (10)0.0502 (9)0.0455 (8)−0.0089 (7)−0.0170 (7)−0.0008 (7)
C140.0698 (11)0.0637 (12)0.0600 (10)−0.0001 (9)−0.0218 (8)−0.0105 (8)
N10.0745 (10)0.0704 (12)0.0794 (11)−0.0065 (8)−0.0232 (8)−0.0264 (8)
N20.0734 (9)0.0667 (10)0.0507 (8)−0.0049 (7)−0.0103 (7)−0.0114 (7)
O10.0889 (10)0.0822 (11)0.1002 (11)0.0161 (8)−0.0239 (8)−0.0325 (8)
O20.0665 (8)0.0665 (9)0.0756 (8)−0.0047 (6)−0.0244 (6)−0.0235 (6)

Geometric parameters (Å, °)

C1—N11.340 (3)C7—H7B0.96
C1—C21.359 (3)C7—H7C0.96
C1—H10.93C8—C91.394 (2)
C2—C31.400 (3)C8—C131.401 (2)
C2—H20.93C8—C141.455 (3)
C3—N21.355 (2)C9—C101.372 (3)
C3—C41.407 (2)C9—H90.93
C4—C51.357 (3)C10—C111.378 (3)
C4—H40.93C10—H100.93
C5—N11.339 (3)C11—C121.378 (3)
C5—H50.93C11—H110.93
C6—N21.446 (2)C12—C131.389 (3)
C6—H6A0.96C12—H120.93
C6—H6B0.96C13—O21.3452 (18)
C6—H6C0.96C14—O11.205 (2)
C7—N21.442 (3)C14—H140.93
C7—H7A0.96O2—H2A0.82
N1—C1—C2124.69 (19)C9—C8—C13119.44 (16)
N1—C1—H1117.7C9—C8—C14120.36 (16)
C2—C1—H1117.7C13—C8—C14120.19 (14)
C1—C2—C3120.29 (17)C10—C9—C8121.25 (17)
C1—C2—H2119.9C10—C9—H9119.4
C3—C2—H2119.9C8—C9—H9119.4
N2—C3—C2122.62 (15)C9—C10—C11118.68 (17)
N2—C3—C4122.36 (16)C9—C10—H10120.7
C2—C3—C4115.02 (16)C11—C10—H10120.7
C5—C4—C3120.10 (18)C10—C11—C12121.63 (19)
C5—C4—H4120C10—C11—H11119.2
C3—C4—H4120C12—C11—H11119.2
N1—C5—C4124.86 (17)C11—C12—C13119.98 (18)
N1—C5—H5117.6C11—C12—H12120
C4—C5—H5117.6C13—C12—H12120
N2—C6—H6A109.5O2—C13—C12121.78 (16)
N2—C6—H6B109.5O2—C13—C8119.24 (15)
H6A—C6—H6B109.5C12—C13—C8118.99 (15)
N2—C6—H6C109.5O1—C14—C8125.87 (17)
H6A—C6—H6C109.5O1—C14—H14117.1
H6B—C6—H6C109.5C8—C14—H14117.1
N2—C7—H7A109.5C5—N1—C1114.99 (16)
N2—C7—H7B109.5C3—N2—C7120.92 (15)
H7A—C7—H7B109.5C3—N2—C6121.81 (17)
N2—C7—H7C109.5C7—N2—C6117.26 (16)
H7A—C7—H7C109.5C13—O2—H2A109.5
H7B—C7—H7C109.5
N1—C1—C2—C3−1.0 (3)C9—C8—C13—O2177.74 (14)
C1—C2—C3—N2−177.17 (16)C14—C8—C13—O2−3.5 (2)
C1—C2—C3—C42.3 (2)C9—C8—C13—C12−1.9 (2)
N2—C3—C4—C5177.77 (16)C14—C8—C13—C12176.90 (16)
C2—C3—C4—C5−1.7 (2)C9—C8—C14—O1−6.8 (3)
C3—C4—C5—N1−0.3 (3)C13—C8—C14—O1174.44 (18)
C13—C8—C9—C101.3 (2)C4—C5—N1—C11.7 (3)
C14—C8—C9—C10−177.51 (16)C2—C1—N1—C5−1.1 (3)
C8—C9—C10—C110.1 (3)C2—C3—N2—C7177.21 (17)
C9—C10—C11—C12−0.8 (3)C4—C3—N2—C7−2.2 (3)
C10—C11—C12—C130.2 (3)C2—C3—N2—C6−3.3 (3)
C11—C12—C13—O2−178.43 (16)C4—C3—N2—C6177.28 (17)
C11—C12—C13—C81.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.822.637 (2)174
C9—H9···O1i0.932.693.456 (3)140
C5—H5···O1ii0.932.73.583 (3)158

Symmetry codes: (i) −x+2, −y−1, −z; (ii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2756).

References

  • Bosch, E. (2010). Cryst. Growth Des.10, 3808–3813.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Lehn, J. M. (1995). Supramolecular Chemistry. New York: VCH.
  • Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m958–m959. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913–o916.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography