PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2366.
Published online 2010 August 21. doi:  10.1107/S1600536810033155
PMCID: PMC3008134

5-(4-Fluoro­benzyl­idene)-2,2-dimethyl-1,3-dioxane-4,6-dione

Abstract

The title compound, C13H11FO4, was prepared by the reaction of 2,2-dimethyl-1,3-dioxane-4,6-dione and 4-fluoro­benz­alde­hyde in ethanol. The 1,3-dioxane ring adopts an envelope conformation. The crystal structure is stabilized by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For background information on the use of Meldrum’s acid (2,2-dimethyl-1,3-dioxane-4,6-dione) in organic synthesis, see: Kuhn et al. (2003 [triangle]); Casadesus et al. (2006 [triangle]). For a related structure, see: Zeng & Jian (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2366-scheme1.jpg

Experimental

Crystal data

  • C13H11FO4
  • M r = 250.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2366-efi1.jpg
  • a = 10.607 (2) Å
  • b = 10.413 (2) Å
  • c = 11.366 (2) Å
  • β = 106.09 (3)°
  • V = 1206.2 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.17 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • 11341 measured reflections
  • 2748 independent reflections
  • 1773 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.182
  • S = 1.16
  • 2748 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033155/lh5116sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033155/lh5116Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Starting with its discovery and correct structural assignment, Meldrum's acid has become a widely used reagent in organic synthesis (Kuhn et al., 2003; Casadesus et al., 2006). We have recently reported the crystal structure of 5-(2-fluorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (Zeng & Jian, 2009). As part of our search for new Meldrum's acid derivatives the title compound,(I)(Fig. 1), has been synthesized and its crystal structure is reported herein. The crystal structure analysis confirms the title compound with atom C7 connected to a benzene ring via the C7-C8 single bond [1.451 (2)Å] and a 1,3-dioxane ring via the C7═C5 double bond [1.349 (2)Å]. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303K. After dissolving, propan-2-one (3.48 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 2 h. The mixture was cooled and filtered, and then an ethanol solution of 4-fluorobenzaldehyde (7.67g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an petroleum ether-ethylacetate (3:1 v/v) solution of (I) at room temperature over a period of several days.

Refinement

The H atoms were placed in calculated positions (C—H = 0.93–0.96 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.

Crystal data

C13H11FO4F(000) = 520
Mr = 250.22Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2748 reflections
a = 10.607 (2) Åθ = 3.0–27.5°
b = 10.413 (2) ŵ = 0.11 mm1
c = 11.366 (2) ÅT = 293 K
β = 106.09 (3)°Block, colorless
V = 1206.2 (4) Å30.17 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1773 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
graphiteθmax = 27.5°, θmin = 3.0°
[var phi] and ω scansh = −13→13
11341 measured reflectionsk = −13→13
2748 independent reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.16w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
2748 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O20.19531 (11)0.04581 (14)0.03108 (11)0.0683 (4)
O40.48662 (11)0.09217 (13)−0.12156 (11)0.0669 (4)
O10.29516 (11)0.01292 (14)−0.12672 (11)0.0685 (4)
C70.46120 (16)0.27281 (18)0.07462 (14)0.0588 (4)
H7A0.44520.30290.14620.071*
O30.27783 (14)0.17669 (16)0.18433 (12)0.0848 (5)
C50.38086 (15)0.17577 (16)0.02221 (13)0.0541 (4)
C40.39340 (15)0.09646 (17)−0.08040 (15)0.0566 (4)
C80.56723 (16)0.34028 (17)0.04331 (14)0.0577 (4)
C60.28220 (17)0.13664 (19)0.08633 (16)0.0625 (5)
C30.17201 (16)0.0255 (2)−0.09776 (16)0.0661 (5)
C130.65632 (18)0.4046 (2)0.13807 (17)0.0693 (5)
H13A0.64600.40080.21660.083*
C90.5822 (2)0.3527 (2)−0.07392 (17)0.0706 (5)
H9A0.52260.3128−0.13940.085*
F10.86826 (14)0.55357 (17)−0.01890 (16)0.1227 (6)
C100.6833 (2)0.4228 (2)−0.0945 (2)0.0837 (6)
H10A0.69280.4306−0.17310.100*
C20.0951 (2)0.1370 (2)−0.16850 (19)0.0837 (6)
H2A0.14440.2149−0.14620.126*
H2B0.01280.1447−0.14940.126*
H2C0.07940.1222−0.25470.126*
C120.75946 (19)0.4739 (2)0.1185 (2)0.0806 (6)
H12A0.82000.51440.18280.097*
C110.7695 (2)0.4809 (2)0.0023 (2)0.0814 (6)
C10.1052 (2)−0.1014 (2)−0.1254 (2)0.0918 (7)
H1A0.1597−0.1669−0.07750.138*
H1B0.0900−0.1205−0.21090.138*
H1C0.0229−0.0986−0.10580.138*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.0660 (7)0.0800 (9)0.0650 (8)−0.0019 (6)0.0283 (6)0.0010 (6)
O40.0655 (7)0.0787 (9)0.0648 (8)0.0073 (6)0.0321 (6)−0.0021 (6)
O10.0620 (7)0.0813 (9)0.0663 (8)−0.0011 (6)0.0244 (6)−0.0140 (6)
C70.0654 (9)0.0671 (11)0.0449 (8)0.0118 (8)0.0173 (7)0.0042 (7)
O30.0943 (10)0.1107 (13)0.0621 (8)−0.0072 (8)0.0427 (7)−0.0087 (7)
C50.0562 (8)0.0627 (10)0.0464 (8)0.0083 (7)0.0192 (6)0.0048 (7)
C40.0580 (9)0.0631 (10)0.0500 (8)0.0089 (7)0.0169 (7)0.0027 (7)
C80.0615 (9)0.0602 (10)0.0516 (9)0.0086 (7)0.0162 (7)0.0035 (7)
C60.0659 (10)0.0709 (12)0.0552 (10)0.0076 (8)0.0244 (8)0.0058 (8)
C30.0568 (9)0.0811 (13)0.0635 (10)0.0024 (8)0.0219 (8)−0.0051 (9)
C130.0696 (11)0.0759 (13)0.0609 (10)0.0036 (9)0.0157 (8)−0.0028 (9)
C90.0817 (12)0.0749 (13)0.0558 (10)−0.0003 (10)0.0199 (9)0.0067 (8)
F10.0936 (9)0.1271 (13)0.1624 (16)−0.0198 (9)0.0608 (10)0.0147 (10)
C100.0994 (15)0.0889 (16)0.0738 (13)0.0043 (12)0.0424 (12)0.0138 (11)
C20.0683 (11)0.0995 (16)0.0783 (13)0.0120 (11)0.0121 (10)0.0050 (12)
C120.0655 (11)0.0870 (15)0.0845 (14)−0.0003 (10)0.0130 (10)−0.0014 (11)
C110.0621 (10)0.0815 (14)0.1091 (16)0.0033 (10)0.0377 (11)0.0108 (13)
C10.0819 (13)0.0876 (16)0.1103 (18)−0.0143 (11)0.0337 (12)−0.0196 (13)

Geometric parameters (Å, °)

O2—C61.348 (2)C13—C121.379 (3)
O2—C31.432 (2)C13—H13A0.9300
O4—C41.2063 (19)C9—C101.370 (3)
O1—C41.347 (2)C9—H9A0.9300
O1—C31.4388 (19)F1—C111.367 (2)
C7—C51.349 (2)C10—C111.362 (3)
C7—C81.451 (2)C10—H10A0.9300
C7—H7A0.9300C2—H2A0.9600
O3—C61.202 (2)C2—H2B0.9600
C5—C41.465 (2)C2—H2C0.9600
C5—C61.488 (2)C12—C111.356 (3)
C8—C91.391 (2)C12—H12A0.9300
C8—C131.392 (3)C1—H1A0.9600
C3—C11.491 (3)C1—H1B0.9600
C3—C21.516 (3)C1—H1C0.9600
C6—O2—C3118.82 (14)C8—C13—H13A119.1
C4—O1—C3120.31 (14)C10—C9—C8121.03 (19)
C5—C7—C8133.77 (16)C10—C9—H9A119.5
C5—C7—H7A113.1C8—C9—H9A119.5
C8—C7—H7A113.1C11—C10—C9118.7 (2)
C7—C5—C4126.02 (15)C11—C10—H10A120.6
C7—C5—C6115.63 (15)C9—C10—H10A120.6
C4—C5—C6117.82 (15)C3—C2—H2A109.5
O4—C4—O1116.92 (15)C3—C2—H2B109.5
O4—C4—C5126.49 (16)H2A—C2—H2B109.5
O1—C4—C5116.36 (14)C3—C2—H2C109.5
C9—C8—C13117.60 (18)H2A—C2—H2C109.5
C9—C8—C7125.56 (16)H2B—C2—H2C109.5
C13—C8—C7116.70 (15)C11—C12—C13117.8 (2)
O3—C6—O2118.56 (17)C11—C12—H12A121.1
O3—C6—C5124.86 (18)C13—C12—H12A121.1
O2—C6—C5116.53 (15)C12—C11—C10123.1 (2)
O2—C3—O1109.70 (13)C12—C11—F1118.2 (2)
O2—C3—C1106.49 (17)C10—C11—F1118.6 (2)
O1—C3—C1106.23 (16)C3—C1—H1A109.5
O2—C3—C2110.14 (16)C3—C1—H1B109.5
O1—C3—C2109.73 (16)H1A—C1—H1B109.5
C1—C3—C2114.39 (16)C3—C1—H1C109.5
C12—C13—C8121.71 (19)H1A—C1—H1C109.5
C12—C13—H13A119.1H1B—C1—H1C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.932.473.373 (3)164

Symmetry codes: (i) −x+1, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5116).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Casadesus, M., Coogan, M. P. & Ooi, L. L. (2006). Org. Biomol. Chem.58, 3822–3830. [PubMed]
  • Kuhn, N., Al-Sheikh, A. & Steimann, M. (2003). Z. Naturforsch 58, 381–384.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zeng, W.-L. & Jian, F.-F. (2009). Acta Cryst. E65, o2587. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography