PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1120.
Published online 2010 August 18. doi:  10.1107/S1600536810032125
PMCID: PMC3008129

Di-μ-azido-κ4 N 1:N 1-bis­[(1,10-phen­anthroline-κ2 N,N′)(thio­cyanato-κN)lead(II)]

Abstract

In the centrosymmetric binuclear title compound, [Pb2(N3)2(NCS)2(C12H8N2)4], the N-donor atoms of one N-heterocycle and the N-donor atom of a thio­cyanate anion along with the sterically active lone-pair electrons comprise an approximate square; a plane through three atoms of this square is twisted slightly with respect to the square made up of the other four atoms (two from the other N-heterocycle and one each from the bridging azide anions) at a dihedral angle of 18.7 (1)°. The PbII atom is in a Ψ-square-anti­prismaic coordination.

Related literature

For related structures, see: Engelhardt et al. (1989 [triangle]); Zhu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1120-scheme1.jpg

Experimental

Crystal data

  • [Pb2(N3)2(NCS)2(C12H8N2)4]
  • M r = 1335.42
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1120-efi1.jpg
  • a = 10.3412 (6) Å
  • b = 10.8327 (6) Å
  • c = 11.4178 (6) Å
  • α = 89.923 (1)°
  • β = 72.080 (1)°
  • γ = 65.273 (1)°
  • V = 1093.35 (10) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 7.85 mm−1
  • T = 100 K
  • 0.25 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.244, T max = 0.386
  • 10523 measured reflections
  • 5002 independent reflections
  • 4783 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.061
  • S = 1.09
  • 5002 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 1.23 e Å−3
  • Δρmin = −1.38 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032125/ci5151sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032125/ci5151Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Relative to the (1,10-phenanthroline)lead(II) species, the azide counterion can function as a bridging unit through only one nitrogen atom only or through two end nitrogen atoms. In fact, an example is known in which the anion functions in both bridging modes (Zhu et al., 2008). Similarly, an example is known in which the thiocyanate anion functions in dual bridging modes (Engelhardt et al., 1989). The title compound (Scheme I) is a centrosymmetric dinuclear lead(II) compound having the azide and thiocyanate anions behaving only in one type of bonding interaction; the azide bridges through only one nitrogen atom but the thiocyanate anion is unidentate (Fig. 1). The nitrogen donor-atoms of one 1,10-phenanthroline ligand, the nitrogen donor-atom of a thiocyanate along with the sterically active lone-pair electrons comprise an approximate square (Fig. 2); the three atoms of this square is slightly twisted with respect to the square made up by the other four atoms (two from the other 1,10-phenanthroline and one each from the bridging azide anions) at a dihedral angle of 18.7 (1)°. Obviously, the tilt arises from the presence of the lone pair. The lead atom is displaced by 1.044 (3) Å with respect to the three-atom plane and is displaced in the opposite direction by 1.548 (1) Å with respect to the four atom plane. The geometry of the lead atom is better regarded as showing Ψ-square antiprismatic coordination.

Experimental

Potassium thiocyanate (0.5 mmol, 0.09 g), sodium azide (0.03 g, 0.05 mmol) and 1,10-phenanthroline (2 mmol, 0.36 g) were loaded into one arm of a U-shaped glass tube. Lead(II) acetate (0.38 g, 1 mmol) and sodium nitrite (0.07 g, 1 mmol) were loaded into the other. Methanol was added to both arms. The ligand-containing arm was immersed in an oil bath at 333 K whereas the other arm was kept at ambient temperature. Crystals were collected after 10 days.

Refinement

H atoms were placed in calculated positions (C–H = 0.95 Å) and included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 times Ueq(C). The final difference Fourier map had a peak and a hole in the vicinity of the lead atom.

Figures

Fig. 1.
Displacement ellipsoid plot (Barbour, 2001) of centrosymmetric [Pb2(N3)2(NCS)2(C12H8N2)4] at the 70% probability level. H atoms are drawn as spheres of arbitrary radius. Symmetry-related (1 - x, 1 - y, 1 - z) atoms are not labeled.
Fig. 2.
The square environment of the Pb atom.

Crystal data

[Pb2(N3)2(NCS)2(C12H8N2)4]Z = 1
Mr = 1335.42F(000) = 642
Triclinic, P1Dx = 2.034 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3412 (6) ÅCell parameters from 8054 reflections
b = 10.8327 (6) Åθ = 2.3–28.3°
c = 11.4178 (6) ŵ = 7.85 mm1
α = 89.923 (1)°T = 100 K
β = 72.080 (1)°Prism, colourless
γ = 65.273 (1)°0.25 × 0.15 × 0.15 mm
V = 1093.35 (10) Å3

Data collection

Bruker SMART APEXII area-detector diffractometer5002 independent reflections
Radiation source: fine-focus sealed tube4783 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.244, Tmax = 0.386k = −14→13
10523 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.041P)2] where P = (Fo2 + 2Fc2)/3
5002 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = −1.37 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pb10.451831 (12)0.668463 (11)0.618902 (10)0.00916 (5)
S1−0.09428 (10)0.84240 (11)0.95648 (9)0.0222 (2)
N10.3623 (3)0.8343 (3)0.4496 (3)0.0121 (6)
N20.6474 (3)0.7683 (3)0.4566 (3)0.0114 (6)
N30.4103 (3)0.4959 (3)0.7794 (3)0.0120 (6)
N40.6519 (3)0.5550 (3)0.7575 (3)0.0120 (6)
N50.6529 (3)0.4519 (3)0.4832 (3)0.0123 (6)
N60.7855 (3)0.4215 (3)0.4627 (3)0.0126 (6)
N70.9113 (4)0.3913 (3)0.4423 (3)0.0233 (7)
N80.1509 (3)0.8079 (3)0.7442 (3)0.0192 (6)
C10.4430 (4)0.8968 (3)0.3809 (3)0.0105 (6)
C20.2277 (4)0.8640 (4)0.4419 (4)0.0155 (7)
H20.17090.82050.49040.019*
C30.1637 (4)0.9559 (4)0.3663 (3)0.0142 (7)
H30.06720.97240.36310.017*
C40.2422 (4)1.0207 (4)0.2979 (3)0.0151 (7)
H40.20061.08410.24680.018*
C50.3852 (4)0.9931 (4)0.3035 (3)0.0124 (6)
C60.4768 (4)1.0539 (3)0.2299 (3)0.0137 (7)
H60.43861.11740.17750.016*
C70.6157 (4)1.0224 (4)0.2339 (3)0.0135 (7)
H70.67381.06410.18440.016*
C80.6776 (4)0.9273 (3)0.3113 (3)0.0120 (6)
C90.8244 (4)0.8902 (4)0.3146 (3)0.0141 (7)
H90.88490.93090.26700.017*
C100.8783 (4)0.7946 (4)0.3876 (3)0.0151 (7)
H100.97660.76820.39150.018*
C110.7866 (4)0.7369 (4)0.4559 (3)0.0138 (7)
H110.82630.67030.50540.017*
C120.5929 (4)0.8631 (3)0.3841 (3)0.0098 (6)
C130.5152 (4)0.4199 (4)0.8317 (3)0.0115 (6)
C140.2921 (4)0.4702 (4)0.7950 (3)0.0141 (7)
H140.21830.52430.75970.017*
C150.2702 (4)0.3671 (4)0.8612 (3)0.0133 (7)
H150.18330.35270.87060.016*
C160.3759 (4)0.2880 (4)0.9118 (3)0.0136 (7)
H160.36390.21720.95630.016*
C170.5034 (4)0.3128 (3)0.8971 (3)0.0113 (6)
C180.6175 (4)0.2330 (4)0.9489 (3)0.0145 (7)
H180.61070.15840.98980.017*
C190.7349 (4)0.2629 (4)0.9401 (3)0.0142 (7)
H190.80930.20950.97520.017*
C200.7469 (4)0.3743 (4)0.8785 (3)0.0125 (7)
C210.8638 (4)0.4121 (4)0.8715 (3)0.0145 (7)
H210.93640.36400.91000.017*
C220.8727 (4)0.5168 (4)0.8102 (3)0.0150 (7)
H220.95050.54350.80570.018*
C230.7647 (4)0.5852 (4)0.7531 (3)0.0139 (7)
H230.77320.65730.70890.017*
C240.6409 (4)0.4512 (3)0.8211 (3)0.0102 (6)
C250.0496 (4)0.8222 (4)0.8327 (3)0.0142 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pb10.00832 (7)0.01057 (7)0.00924 (8)−0.00546 (5)−0.00197 (5)0.00214 (5)
S10.0135 (4)0.0343 (5)0.0161 (5)−0.0093 (4)−0.0034 (4)0.0113 (4)
N10.0106 (13)0.0119 (14)0.0143 (14)−0.0061 (11)−0.0032 (11)0.0025 (11)
N20.0114 (13)0.0113 (14)0.0117 (14)−0.0057 (11)−0.0030 (11)0.0027 (11)
N30.0125 (13)0.0134 (14)0.0113 (14)−0.0069 (11)−0.0040 (11)0.0053 (11)
N40.0122 (13)0.0137 (14)0.0096 (14)−0.0071 (11)−0.0010 (11)0.0016 (11)
N50.0106 (13)0.0121 (14)0.0144 (14)−0.0064 (11)−0.0023 (11)0.0008 (11)
N60.0145 (14)0.0113 (14)0.0143 (15)−0.0075 (11)−0.0055 (12)0.0026 (11)
N70.0137 (15)0.0235 (17)0.034 (2)−0.0092 (13)−0.0084 (14)0.0047 (15)
N80.0147 (15)0.0193 (16)0.0184 (16)−0.0066 (13)−0.0002 (13)0.0012 (13)
C10.0117 (15)0.0119 (16)0.0044 (14)−0.0051 (13)0.0016 (12)−0.0017 (12)
C20.0154 (16)0.0155 (18)0.0184 (18)−0.0087 (14)−0.0069 (14)0.0040 (14)
C30.0108 (15)0.0165 (17)0.0145 (17)−0.0050 (14)−0.0047 (13)0.0010 (14)
C40.0159 (17)0.0148 (17)0.0142 (17)−0.0049 (14)−0.0073 (14)0.0030 (14)
C50.0131 (15)0.0112 (16)0.0104 (16)−0.0046 (13)−0.0019 (13)−0.0002 (13)
C60.0158 (16)0.0100 (16)0.0118 (16)−0.0036 (13)−0.0029 (13)0.0023 (13)
C70.0152 (16)0.0137 (16)0.0091 (16)−0.0086 (13)0.0021 (13)0.0001 (13)
C80.0121 (15)0.0098 (16)0.0107 (16)−0.0045 (13)0.0002 (13)−0.0021 (13)
C90.0134 (16)0.0115 (16)0.0160 (17)−0.0075 (13)−0.0003 (13)−0.0009 (13)
C100.0109 (15)0.0179 (18)0.0142 (17)−0.0048 (14)−0.0034 (13)−0.0014 (14)
C110.0120 (15)0.0138 (17)0.0136 (17)−0.0052 (13)−0.0025 (13)0.0008 (13)
C120.0103 (15)0.0103 (15)0.0057 (15)−0.0043 (12)0.0012 (12)−0.0007 (12)
C130.0110 (15)0.0127 (16)0.0093 (16)−0.0042 (13)−0.0028 (12)−0.0004 (13)
C140.0138 (16)0.0175 (17)0.0138 (17)−0.0080 (14)−0.0068 (13)0.0038 (14)
C150.0120 (15)0.0181 (17)0.0114 (16)−0.0108 (14)0.0001 (13)−0.0003 (13)
C160.0159 (16)0.0131 (16)0.0075 (16)−0.0069 (14)0.0023 (13)−0.0009 (13)
C170.0136 (15)0.0105 (16)0.0053 (15)−0.0039 (13)0.0006 (12)−0.0022 (12)
C180.0161 (16)0.0130 (17)0.0112 (16)−0.0047 (14)−0.0031 (13)0.0037 (13)
C190.0140 (16)0.0143 (17)0.0125 (16)−0.0043 (13)−0.0047 (13)0.0027 (13)
C200.0123 (16)0.0148 (17)0.0069 (15)−0.0040 (13)−0.0016 (13)−0.0025 (13)
C210.0120 (15)0.0172 (17)0.0122 (16)−0.0039 (13)−0.0050 (13)−0.0004 (13)
C220.0100 (15)0.0227 (19)0.0120 (16)−0.0094 (14)0.0000 (13)−0.0008 (14)
C230.0118 (15)0.0165 (17)0.0115 (16)−0.0077 (13)0.0004 (13)0.0006 (13)
C240.0100 (15)0.0120 (16)0.0061 (15)−0.0043 (13)−0.0003 (12)−0.0009 (12)
C250.0127 (16)0.0134 (17)0.0163 (17)−0.0048 (13)−0.0059 (14)0.0043 (13)

Geometric parameters (Å, °)

Pb1—N52.485 (3)C6—H60.95
Pb1—N5i2.489 (3)C7—C81.430 (5)
Pb1—N32.687 (3)C7—H70.95
Pb1—N82.711 (3)C8—C121.415 (5)
Pb1—N12.742 (3)C8—C91.412 (5)
Pb1—N42.860 (3)C9—C101.370 (5)
Pb1—N22.865 (3)C9—H90.95
S1—C251.641 (4)C10—C111.392 (5)
N1—C21.324 (4)C10—H100.95
N1—C11.356 (4)C11—H110.95
N2—C111.331 (4)C13—C171.407 (5)
N2—C121.364 (4)C13—C241.446 (5)
N3—C141.324 (4)C14—C151.404 (5)
N3—C131.364 (4)C14—H140.95
N4—C231.325 (4)C15—C161.366 (5)
N4—C241.363 (4)C15—H150.95
N5—N61.211 (4)C16—C171.413 (5)
N5—Pb1i2.489 (3)C16—H160.95
N6—N71.145 (4)C17—C181.437 (5)
N8—C251.164 (5)C18—C191.358 (5)
C1—C51.423 (5)C18—H180.95
C1—C121.448 (5)C19—C201.427 (5)
C2—C31.404 (5)C19—H190.95
C2—H20.95C20—C211.412 (5)
C3—C41.359 (5)C20—C241.415 (5)
C3—H30.95C21—C221.353 (5)
C4—C51.403 (5)C21—H210.95
C4—H40.95C22—C231.405 (5)
C5—C61.439 (5)C22—H220.95
C6—C71.347 (5)C23—H230.95
N5—Pb1—N5i67.99 (11)C6—C7—C8121.3 (3)
N5—Pb1—N382.92 (9)C6—C7—H7119.3
N5i—Pb1—N377.99 (9)C8—C7—H7119.3
N5—Pb1—N8144.35 (10)C12—C8—C9118.0 (3)
N5i—Pb1—N878.18 (10)C12—C8—C7119.8 (3)
N3—Pb1—N879.30 (9)C9—C8—C7122.2 (3)
N5—Pb1—N1102.42 (9)C10—C9—C8118.9 (3)
N5i—Pb1—N176.63 (9)C10—C9—H9120.5
N3—Pb1—N1149.70 (8)C8—C9—H9120.5
N8—Pb1—N179.54 (9)C9—C10—C11119.0 (3)
N5—Pb1—N476.52 (9)C9—C10—H10120.5
N5i—Pb1—N4127.42 (9)C11—C10—H10120.5
N3—Pb1—N459.80 (8)N2—C11—C10124.6 (3)
N8—Pb1—N4118.75 (9)N2—C11—H11117.7
N1—Pb1—N4150.49 (8)C10—C11—H11117.7
N5—Pb1—N279.06 (9)N2—C12—C8122.6 (3)
N5i—Pb1—N2116.13 (9)N2—C12—C1118.0 (3)
N3—Pb1—N2150.03 (8)C8—C12—C1119.4 (3)
N8—Pb1—N2127.96 (9)N3—C13—C17121.7 (3)
N1—Pb1—N258.79 (8)N3—C13—C24119.2 (3)
N4—Pb1—N292.59 (8)C17—C13—C24119.0 (3)
C2—N1—C1118.1 (3)N3—C14—C15123.3 (3)
C2—N1—Pb1118.2 (2)N3—C14—H14118.3
C1—N1—Pb1123.5 (2)C15—C14—H14118.3
C11—N2—C12116.9 (3)C16—C15—C14118.9 (3)
C11—N2—Pb1123.4 (2)C16—C15—H15120.5
C12—N2—Pb1119.4 (2)C14—C15—H15120.5
C14—N3—C13118.5 (3)C15—C16—C17119.2 (3)
C14—N3—Pb1117.9 (2)C15—C16—H16120.4
C13—N3—Pb1123.0 (2)C17—C16—H16120.4
C23—N4—C24117.7 (3)C16—C17—C13118.3 (3)
C23—N4—Pb1124.6 (2)C16—C17—C18121.4 (3)
C24—N4—Pb1117.2 (2)C13—C17—C18120.3 (3)
N6—N5—Pb1121.1 (2)C19—C18—C17120.8 (3)
N6—N5—Pb1i126.5 (2)C19—C18—H18119.6
Pb1—N5—Pb1i112.01 (11)C17—C18—H18119.6
N7—N6—N5179.1 (4)C18—C19—C20120.2 (3)
C25—N8—Pb1147.1 (3)C18—C19—H19119.9
N1—C1—C5121.6 (3)C20—C19—H19119.9
N1—C1—C12119.4 (3)C21—C20—C24117.3 (3)
C5—C1—C12119.0 (3)C21—C20—C19122.0 (3)
N1—C2—C3123.8 (3)C24—C20—C19120.7 (3)
N1—C2—H2118.1C22—C21—C20120.1 (3)
C3—C2—H2118.1C22—C21—H21120.0
C4—C3—C2118.9 (3)C20—C21—H21120.0
C4—C3—H3120.5C21—C22—C23118.7 (3)
C2—C3—H3120.5C21—C22—H22120.6
C3—C4—C5119.3 (3)C23—C22—H22120.6
C3—C4—H4120.4N4—C23—C22123.8 (3)
C5—C4—H4120.4N4—C23—H23118.1
C4—C5—C1118.3 (3)C22—C23—H23118.1
C4—C5—C6122.2 (3)N4—C24—C20122.4 (3)
C1—C5—C6119.5 (3)N4—C24—C13118.8 (3)
C7—C6—C5121.1 (3)C20—C24—C13118.8 (3)
C7—C6—H6119.5N8—C25—S1179.4 (3)
C5—C6—H6119.5
N5—Pb1—N1—C2109.1 (3)C1—N1—C2—C30.3 (5)
N5i—Pb1—N1—C245.6 (3)Pb1—N1—C2—C3174.9 (3)
N3—Pb1—N1—C211.8 (4)N1—C2—C3—C4−1.1 (6)
N8—Pb1—N1—C2−34.6 (3)C2—C3—C4—C50.7 (5)
N4—Pb1—N1—C2−166.4 (2)C3—C4—C5—C10.3 (5)
N2—Pb1—N1—C2178.0 (3)C3—C4—C5—C6177.5 (3)
N5—Pb1—N1—C1−76.6 (3)N1—C1—C5—C4−1.1 (5)
N5i—Pb1—N1—C1−140.1 (3)C12—C1—C5—C4177.6 (3)
N3—Pb1—N1—C1−173.9 (2)N1—C1—C5—C6−178.4 (3)
N8—Pb1—N1—C1139.7 (3)C12—C1—C5—C60.4 (5)
N4—Pb1—N1—C17.9 (4)C4—C5—C6—C7−177.9 (3)
N2—Pb1—N1—C1−7.8 (2)C1—C5—C6—C7−0.7 (5)
N5—Pb1—N2—C11−67.0 (3)C5—C6—C7—C80.0 (5)
N5i—Pb1—N2—C11−125.6 (3)C6—C7—C8—C120.9 (5)
N3—Pb1—N2—C11−12.9 (4)C6—C7—C8—C9178.4 (3)
N8—Pb1—N2—C11139.0 (3)C12—C8—C9—C10−0.1 (5)
N1—Pb1—N2—C11−178.9 (3)C7—C8—C9—C10−177.6 (3)
N4—Pb1—N2—C118.8 (3)C8—C9—C10—C110.2 (5)
N5—Pb1—N2—C12119.5 (2)C12—N2—C11—C100.6 (5)
N5i—Pb1—N2—C1260.9 (3)Pb1—N2—C11—C10−173.1 (3)
N3—Pb1—N2—C12173.6 (2)C9—C10—C11—N2−0.4 (6)
N8—Pb1—N2—C12−34.5 (3)C11—N2—C12—C8−0.5 (5)
N1—Pb1—N2—C127.6 (2)Pb1—N2—C12—C8173.4 (2)
N4—Pb1—N2—C12−164.7 (2)C11—N2—C12—C1178.6 (3)
N5—Pb1—N3—C14−104.1 (3)Pb1—N2—C12—C1−7.5 (4)
N5i—Pb1—N3—C14−35.1 (3)C9—C8—C12—N20.3 (5)
N8—Pb1—N3—C1444.9 (3)C7—C8—C12—N2177.8 (3)
N1—Pb1—N3—C14−1.5 (4)C9—C8—C12—C1−178.8 (3)
N4—Pb1—N3—C14177.4 (3)C7—C8—C12—C1−1.2 (5)
N2—Pb1—N3—C14−157.3 (2)N1—C1—C12—N20.3 (5)
N5—Pb1—N3—C1366.6 (3)C5—C1—C12—N2−178.5 (3)
N5i—Pb1—N3—C13135.5 (3)N1—C1—C12—C8179.4 (3)
N8—Pb1—N3—C13−144.4 (3)C5—C1—C12—C80.6 (5)
N1—Pb1—N3—C13169.2 (2)C14—N3—C13—C172.3 (5)
N4—Pb1—N3—C13−11.9 (2)Pb1—N3—C13—C17−168.3 (2)
N2—Pb1—N3—C1313.4 (4)C14—N3—C13—C24−176.8 (3)
N5—Pb1—N4—C2393.2 (3)Pb1—N3—C13—C2412.6 (4)
N5i—Pb1—N4—C23141.3 (3)C13—N3—C14—C15−1.0 (5)
N3—Pb1—N4—C23−177.2 (3)Pb1—N3—C14—C15170.1 (3)
N8—Pb1—N4—C23−121.5 (3)N3—C14—C15—C16−0.4 (6)
N1—Pb1—N4—C231.8 (4)C14—C15—C16—C170.5 (5)
N2—Pb1—N4—C2315.1 (3)C15—C16—C17—C130.8 (5)
N5—Pb1—N4—C24−78.8 (2)C15—C16—C17—C18179.7 (3)
N5i—Pb1—N4—C24−30.8 (3)N3—C13—C17—C16−2.2 (5)
N3—Pb1—N4—C2410.8 (2)C24—C13—C17—C16176.9 (3)
N8—Pb1—N4—C2466.4 (2)N3—C13—C17—C18178.8 (3)
N1—Pb1—N4—C24−170.3 (2)C24—C13—C17—C18−2.1 (5)
N2—Pb1—N4—C24−156.9 (2)C16—C17—C18—C19−176.2 (3)
N5i—Pb1—N5—N6173.0 (3)C13—C17—C18—C192.7 (5)
N3—Pb1—N5—N6−107.1 (3)C17—C18—C19—C20−0.3 (5)
N8—Pb1—N5—N6−167.5 (2)C18—C19—C20—C21177.5 (3)
N1—Pb1—N5—N6103.1 (3)C18—C19—C20—C24−2.7 (5)
N4—Pb1—N5—N6−46.6 (3)C24—C20—C21—C22−1.0 (5)
N2—Pb1—N5—N648.8 (3)C19—C20—C21—C22178.8 (3)
N5i—Pb1—N5—Pb1i0.0C20—C21—C22—C23−0.6 (5)
N3—Pb1—N5—Pb1i79.87 (12)C24—N4—C23—C22−0.1 (5)
N8—Pb1—N5—Pb1i19.5 (2)Pb1—N4—C23—C22−172.1 (3)
N1—Pb1—N5—Pb1i−69.85 (12)C21—C22—C23—N41.2 (5)
N4—Pb1—N5—Pb1i140.43 (13)C23—N4—C24—C20−1.6 (5)
N2—Pb1—N5—Pb1i−124.19 (12)Pb1—N4—C24—C20171.0 (2)
N5—Pb1—N8—C2579.2 (6)C23—N4—C24—C13177.5 (3)
N5i—Pb1—N8—C2597.7 (5)Pb1—N4—C24—C13−9.9 (4)
N3—Pb1—N8—C2517.8 (5)C21—C20—C24—N42.2 (5)
N1—Pb1—N8—C25176.0 (5)C19—C20—C24—N4−177.6 (3)
N4—Pb1—N8—C25−28.7 (6)C21—C20—C24—C13−176.9 (3)
N2—Pb1—N8—C25−148.3 (5)C19—C20—C24—C133.3 (5)
C2—N1—C1—C50.8 (5)N3—C13—C24—N4−0.9 (5)
Pb1—N1—C1—C5−173.5 (2)C17—C13—C24—N4180.0 (3)
C2—N1—C1—C12−177.9 (3)N3—C13—C24—C20178.3 (3)
Pb1—N1—C1—C127.8 (4)C17—C13—C24—C20−0.9 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5151).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Engelhardt, L. M., Furphy, B. M., Harrowfield, J. M., Patrick, J. M., Skelton, B. W. & White, A. H. (1989). J. Chem. Soc. Dalton Trans. pp. 595–599.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Zhu, L. H., Zeng, M. H., Shen, X. C. & Ng, S. W. (2008). Main Group Met. Chem.30, 103–104.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography