PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2289–o2290.
Published online 2010 August 11. doi:  10.1107/S1600536810031272
PMCID: PMC3008126

2-(3-Oxo-3,4-dihydro-2H-1,4-benzothia­zin-4-yl)acetohydrazide

Abstract

In the title compound, C10H11N3O2S, the thia­zine ring exists in a conformation inter­mediate between twist-boat and half-chair. The dihedral angle between the mean plane of the thia­zine ring and the hydrazide group is 89.45 (13)°. In the crystal, N—H(...)O hydrogen bonds link the mol­ecules into (100) sheets and weak C—H(...)O inter­actions further consolidate the packing.

Related literature

For the biological and medicinal activity of 1,4-benzothia­zine compounds, see: Armenise et al. (1991 [triangle]); Gupta et al. (1993 [triangle]); Vicente et al. (2009 [triangle]); Schiaffella et al. (2006 [triangle]); Kaneko et al. (2002 [triangle]). For the pharmacological properties of hydrazones and their derivatives, see: Sivasankar et al. (1995 [triangle]); Satyanarayana et al. (2008 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2289-scheme1.jpg

Experimental

Crystal data

  • C10H11N3O2S
  • M r = 237.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2289-efi1.jpg
  • a = 15.3744 (10) Å
  • b = 7.5162 (5) Å
  • c = 9.6256 (7) Å
  • β = 95.413 (3)°
  • V = 1107.35 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 296 K
  • 0.46 × 0.23 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.882, T max = 0.946
  • 6103 measured reflections
  • 2168 independent reflections
  • 2077 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.076
  • S = 1.04
  • 2168 reflections
  • 157 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.14 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 792 Friedel pairs
  • Flack parameter: 0.00 (7)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031272/hb5598sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031272/hb5598Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN Code: 042-120614-PS2-128).

supplementary crystallographic information

Comment

The 4H-benzo(1,4)thiazine compounds exhibit a broad spectrum of biological activitives, such as tetramic acids substituted benzothiazine derivatives are potent inhibitors of HCV polymerase (Vicente et al., 2009)and the pyrazino subsituted 1,4-benzothiazine derivatives are inhibitors of adhesion molecule-1, (Kaneko et al., 2002).They are also known to have antibacterial (Armenise et al.,1991),anticancer (Gupta et al.,1993), antifungal (Schiaffella et al., 2006) activities. The hydrazone compounds were known for their coordinating capability, pharmacological activity, antibacterial and antifungal properties (Sivasankar et al., 1995) (Satyanarayana, et al., 2008). We paid attention to the preparation of hydrazone derivatives of 2-(3-oxo-2,3-dihydro-2H-1,4-benzothiazin-3-one and we report here the structure of the title compound.

The dihedral angle between the aromatic benzene ring C1–C6 and thiazine ring C1/C6/N1/C7/C8/S1 is 16.77(0.10)° while the hydrazide group C9/C10/N2/N3 is oriented at dihedral angle of 89.45(0.13)° with respect to the thiazine ring. The symmetry related intermolecular N—H···O and C—H···O interaction form the dimer along the b axis which results in a ring motif R22(9) (Bernstein et al., 1995). The crystal structure is further stabilized through the N—H···O and week C—H···O interaction to form three dimentional network.

Experimental

Ethyl 2-(3-oxo-2,3-dihydrobenzo[b][1,4]thiazin-4-yl)acetate (1.26 g, 5mmol) was refluxed in 50 ml ethanol with 2.0 ml of hydrazine for 5 hours. On completion the solution was evaporated under reduce pressure and solid obtained was purified from ethanol. Colourless needles of (I) were obtained by slow evaporation from methanol (m.p. 430 K).

Refinement

The C-H H-atoms were positioned with idealized geometry with C—H = 0.93 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C). The N-H H atoms were located in difference map with N—H= 0.76 (4)—0.83 (4) Å, Uiso(H) = 1.2 for N atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound and Intermolecular hydrogen bonds are shown by dashed lines.

Crystal data

C10H11N3O2SF(000) = 496
Mr = 237.28Dx = 1.423 Mg m3
Monoclinic, CcMelting point: 430 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 15.3744 (10) ÅCell parameters from 4206 reflections
b = 7.5162 (5) Åθ = 3.0–31.2°
c = 9.6256 (7) ŵ = 0.28 mm1
β = 95.413 (3)°T = 296 K
V = 1107.35 (13) Å3Needle, colorless
Z = 40.46 × 0.23 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer2168 independent reflections
Radiation source: fine-focus sealed tube2077 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −12→20
Tmin = 0.882, Tmax = 0.946k = −8→10
6103 measured reflectionsl = −12→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2667P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2168 reflectionsΔρmax = 0.18 e Å3
157 parametersΔρmin = −0.14 e Å3
2 restraintsAbsolute structure: Flack (1983), 792 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.81283 (13)0.1402 (3)0.4407 (2)0.0444 (4)
C20.88393 (15)0.1642 (4)0.3624 (3)0.0684 (7)
H20.90610.06740.31700.082*
C30.92138 (15)0.3276 (5)0.3514 (3)0.0727 (7)
H30.96910.34120.29980.087*
C40.88855 (14)0.4717 (4)0.4166 (3)0.0621 (6)
H40.91450.58270.40990.074*
C50.81688 (12)0.4524 (2)0.4924 (2)0.0451 (4)
H50.79440.55140.53470.054*
C60.77806 (10)0.2868 (2)0.50596 (15)0.0325 (3)
C70.64582 (13)0.1320 (2)0.56774 (18)0.0393 (4)
C80.65696 (13)−0.0005 (2)0.4532 (2)0.0473 (4)
H8A0.63980.05370.36330.057*
H8B0.6194−0.10240.46380.057*
C90.68864 (12)0.3985 (2)0.69169 (16)0.0371 (4)
H9A0.74190.46380.71900.044*
H9B0.67100.33880.77380.044*
C100.61760 (11)0.52828 (19)0.63748 (15)0.0311 (3)
N10.70588 (9)0.26545 (17)0.58681 (13)0.0328 (3)
N20.57596 (11)0.60513 (19)0.73773 (16)0.0391 (3)
N30.50598 (12)0.7263 (3)0.70912 (19)0.0491 (4)
O10.60169 (9)0.56431 (16)0.51324 (12)0.0441 (3)
O20.58443 (11)0.1213 (2)0.63853 (16)0.0602 (4)
S10.76839 (4)−0.07275 (6)0.45907 (6)0.06435 (19)
H1N0.5831 (14)0.561 (3)0.822 (3)0.036 (5)*
H2N0.4722 (19)0.678 (4)0.641 (3)0.072 (9)*
H3N0.5321 (18)0.834 (4)0.681 (3)0.065 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0391 (9)0.0492 (9)0.0446 (10)0.0071 (7)0.0020 (8)−0.0098 (8)
C20.0384 (11)0.108 (2)0.0598 (13)0.0113 (12)0.0099 (10)−0.0256 (14)
C30.0360 (10)0.126 (2)0.0580 (14)−0.0063 (14)0.0133 (9)0.0076 (15)
C40.0409 (10)0.0773 (15)0.0673 (14)−0.0139 (10)0.0019 (10)0.0272 (12)
C50.0411 (10)0.0407 (9)0.0531 (12)−0.0021 (8)0.0022 (8)0.0107 (8)
C60.0334 (8)0.0347 (7)0.0288 (8)0.0042 (6)0.0004 (6)0.0033 (6)
C70.0462 (10)0.0359 (8)0.0360 (9)−0.0013 (7)0.0057 (7)0.0027 (7)
C80.0532 (11)0.0358 (9)0.0529 (11)−0.0081 (7)0.0049 (8)−0.0080 (7)
C90.0463 (9)0.0382 (8)0.0266 (8)0.0068 (7)0.0026 (7)−0.0034 (6)
C100.0391 (8)0.0292 (7)0.0253 (7)−0.0012 (6)0.0052 (6)−0.0015 (5)
N10.0393 (7)0.0293 (6)0.0304 (7)0.0025 (5)0.0068 (6)−0.0012 (5)
N20.0516 (9)0.0405 (7)0.0261 (7)0.0102 (6)0.0081 (6)0.0003 (6)
N30.0518 (10)0.0517 (10)0.0455 (9)0.0147 (8)0.0134 (8)0.0016 (8)
O10.0585 (8)0.0504 (7)0.0239 (6)0.0137 (6)0.0059 (5)0.0007 (5)
O20.0559 (9)0.0728 (9)0.0553 (9)−0.0161 (7)0.0223 (7)−0.0008 (8)
S10.0661 (3)0.0354 (2)0.0898 (4)0.0116 (2)−0.0018 (3)−0.0191 (3)

Geometric parameters (Å, °)

C1—C21.397 (3)C7—C81.508 (3)
C1—C61.400 (2)C8—S11.793 (2)
C1—S11.756 (2)C8—H8A0.9700
C2—C31.364 (4)C8—H8B0.9700
C2—H20.9300C9—N11.463 (2)
C3—C41.372 (4)C9—C101.520 (2)
C3—H30.9300C9—H9A0.9700
C4—C51.385 (3)C9—H9B0.9700
C4—H40.9300C10—O11.228 (2)
C5—C61.392 (2)C10—N21.338 (2)
C5—H50.9300N2—N31.417 (2)
C6—N11.423 (2)N2—H1N0.87 (2)
C7—O21.218 (2)N3—H2N0.87 (3)
C7—N11.364 (2)N3—H3N0.96 (3)
C2—C1—C6119.5 (2)S1—C8—H8A109.5
C2—C1—S1120.28 (17)C7—C8—H8B109.5
C6—C1—S1120.24 (15)S1—C8—H8B109.5
C3—C2—C1121.0 (2)H8A—C8—H8B108.1
C3—C2—H2119.5N1—C9—C10111.90 (13)
C1—C2—H2119.5N1—C9—H9A109.2
C2—C3—C4119.9 (2)C10—C9—H9A109.2
C2—C3—H3120.0N1—C9—H9B109.2
C4—C3—H3120.0C10—C9—H9B109.2
C3—C4—C5120.3 (2)H9A—C9—H9B107.9
C3—C4—H4119.9O1—C10—N2122.83 (15)
C5—C4—H4119.9O1—C10—C9123.14 (14)
C4—C5—C6120.8 (2)N2—C10—C9113.99 (13)
C4—C5—H5119.6C7—N1—C6124.21 (13)
C6—C5—H5119.6C7—N1—C9115.53 (14)
C5—C6—C1118.46 (16)C6—N1—C9120.12 (13)
C5—C6—N1121.03 (15)C10—N2—N3122.91 (15)
C1—C6—N1120.49 (15)C10—N2—H1N118.4 (13)
O2—C7—N1121.60 (17)N3—N2—H1N117.0 (14)
O2—C7—C8120.86 (17)N2—N3—H2N105.3 (19)
N1—C7—C8117.53 (15)N2—N3—H3N105.6 (16)
C7—C8—S1110.54 (14)H2N—N3—H3N112 (2)
C7—C8—H8A109.5C1—S1—C895.78 (9)
C6—C1—C2—C31.6 (3)O2—C7—N1—C6−178.88 (18)
S1—C1—C2—C3−177.5 (2)C8—C7—N1—C6−0.2 (2)
C1—C2—C3—C4−0.8 (4)O2—C7—N1—C9−3.3 (2)
C2—C3—C4—C5−0.7 (4)C8—C7—N1—C9175.45 (16)
C3—C4—C5—C61.2 (3)C5—C6—N1—C7155.73 (17)
C4—C5—C6—C1−0.3 (3)C1—C6—N1—C7−25.7 (2)
C4—C5—C6—N1178.29 (17)C5—C6—N1—C9−19.7 (2)
C2—C1—C6—C5−1.1 (3)C1—C6—N1—C9158.89 (15)
S1—C1—C6—C5178.02 (14)C10—C9—N1—C7−76.87 (18)
C2—C1—C6—N1−179.71 (19)C10—C9—N1—C698.95 (17)
S1—C1—C6—N1−0.6 (2)O1—C10—N2—N34.2 (3)
O2—C7—C8—S1−135.26 (18)C9—C10—N2—N3−178.15 (17)
N1—C7—C8—S146.0 (2)C2—C1—S1—C8−143.10 (19)
N1—C9—C10—O1−26.9 (2)C6—C1—S1—C837.80 (16)
N1—C9—C10—N2155.47 (14)C7—C8—S1—C1−58.15 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.96 (3)2.35 (3)3.299 (3)171 (2)
N2—H1N···O1ii0.87 (2)2.07 (2)2.935 (2)175.5 (18)
C3—H3···O2iii0.932.483.406 (3)174
C8—H8B···O1iv0.972.573.442 (2)150

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1, z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5598).

References

  • Armenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Il Farmaco, 46, 1023–1032. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anti-Cancer Drugs, 4, 589–592. [PubMed]
  • Kaneko, T., Clark, S. J. R., Ohi, N., Kawahara, T., Akamatsu, A., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). Chem. Pharm. Bull.50, 922–929. [PubMed]
  • Satyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V., (2008). Arkivoc, xvii, 221–233.
  • Schiaffella, F., Macchiarulo, A., Milanese, L., Anna Vecchiarelli, A. & Renata Fringuelli, R. (2006). Bioorg. Med. Chem.14, 5196–5203. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sivasankar, N. B. & Gavindaragam, S. (1995). Synth. React. Inorg. Met. Org. Chem.25, 127–131.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vicente, J. de et al. (2009). Bioorg. Med. Chem. Lett.19, 5648–5651. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography