PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2269–o2270.
Published online 2010 August 11. doi:  10.1107/S1600536810030977
PMCID: PMC3008123

2-Amino-5-bromo­pyridinium 2-carb­oxy­benzoate

Abstract

The asymmetric unit of the title compound, C5H6BrN2 +·C8H5O4 , consists of two crystallographically independent 2-amino-5-bromo­pyridinium cations (A and B) and two 2-carb­oxy­benzoate anions (A and B). Each 2-amino-5-bromo­pyridinium cation is approximately planar, with a maximum deviation of 0.047 (1) Å in cation A and 0.027 (1) Å in cation B. The 2-amino-5-bromo­pyridinium unit in cation A is inclined at dihedral angles of 4.9 (3) and 2.2 (3)° with the phenyl rings of the A and B 2-carb­oxy­benzoate anions, respectively. The corresponding angles for cation B are 3.0 (3) and 5.6 (3)°. The mol­ecular structure is stabilized by an intra­molecular O—H(...)O hydrogen bond,which generates an S(7) ring motif. The cations and anions are linked via inter­molecular N—H(...)O and C—H(...)O hydrogen bonds, generating R 2 2(8) ring motifs. In the crystal packing, mol­ecules are linked into wave-like chains along [001] via adjacent ring motifs. Short inter­molecular distances between the phenyl and pyridine rings [3.613 (4) and 3.641 (4) Å] indicate the existence of π–π inter­actions. The crystal structure is a non-merohedral twin with a contribution of 0.271 (3) of the minor component.

Related literature

For applications of phthalic acid, see: Dale et al. (2004 [triangle]); Ballabh et al. (2005 [triangle]). For related structures, see: Schuckmann et al. (1978 [triangle]); Küppers (1978 [triangle]); Jessen & Küppers (1991 [triangle]); Quah et al. (2008 [triangle], 2010a [triangle],b [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2269-scheme1.jpg

Experimental

Crystal data

  • C5H6BrN2 +·C8H5O4
  • M r = 339.15
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2269-efi1.jpg
  • a = 9.0192 (4) Å
  • b = 10.2689 (5) Å
  • c = 14.4092 (6) Å
  • α = 82.269 (2)°
  • β = 83.969 (2)°
  • γ = 87.845 (2)°
  • V = 1314.72 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.14 mm−1
  • T = 100 K
  • 0.24 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.526, T max = 0.740
  • 7631 measured reflections
  • 7631 independent reflections
  • 5583 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.194
  • S = 1.09
  • 7631 reflections
  • 364 parameters
  • H-atom parameters constrained
  • Δρmax = 1.14 e Å−3
  • Δρmin = −1.25 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030977/bt5311sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030977/bt5311Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of a USM fellowship and HM also thanks USM for the award of a post­doctoral fellowship.

supplementary crystallographic information

Comment

Phthalic acid forms hydrogen phthalate salts with various organic and other compounds. The crystal structures of hydrogen phthalates include calcium phthalate monohydrate (Schuckmann et al., 1978), lithium hydrogen phthalate monohydrate (Küppers, 1978) and tetramethylammonium hydrogen phthalate (Jessen & Küppers, 1991) have been reported in the literature. Hydrogen phthalates also form supramolecular assemblies, such as extended chains, ribbons and three-dimensional networks (Dale et al., 2004; Ballabh et al., 2005). In this paper, the hydrogen-bonding patterns of 2-amino-5-bromopyridinium hydrogenphthalate, (I), are discussed.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-bromopyridinium cations (A and B) and two 2-carboxybenzoate anions (A and B). The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah et al., 2008, 2010a, b). Each 2-amino-5-bromopyridinium cation is approximately planar, with a maximum deviation of 0.047 (1) Å for atom Br1A in cation A and 0.027 (1) Å for atom Br1B in cation B. The 2-amino-5-bromopyridinium in cation A is inclined at dihedral angles of 4.9 (3) and 2.2 (3)° with the C6A—C11A and C6B—C11B phenyl rings, respectively. The correspondence angles for cation B are 3.0 (3) and 5.6 (3)°. The molecular structure is stabilized by an intramolecular O3B—H2O3···O2B hydrogen bond which generates an S(7) ring motif (Bernstein et al., 1995).

The cations and anions are linked via intermolecular N–H···O and C–H···O hydrogen bonds (Table 1), generating R22(8) ring motifs. In the crystal packing (Fig. 2), the molecules are linked into one-dimensional wave-like chains along [001] via adjacent ring motifs. The crystal packing is further consolidated by π-π stacking interactions between the centroids of C6A—C11A (Cg1), N1B/C1B—C5B (Cg2) rings and C6B—C11B (Cg3), N1A/C1A—C5A (Cg4) rings, with Cg1···Cg2iii and Cg3···Cg4 distances of 3.613 (4) and 3.641 (4) Å, respectively [symmetry code: (iii) x, y, 1 + z]

Experimental

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (86 mg, Aldrich) and phthalic acid (83 mg, Merck) was mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

O– and N– bound H atoms were located in a difference Fourier map and refined using a riding model with O–H = 0.7471–0.8532 Å and N–H = 0.8108–0.9952 Å]. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). The crystal structure is a non-merohedral twin, a contribution of 0.271 (3) of the minor component. The twin law is (-1 0 0 / 0 -1 0 /-0.320 -0.367 1).

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Intramolecular interactions are shown in dashed lines.
Fig. 2.
The crystal structure of the title compound viewed along the b axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C5H6BrN2+·C8H5O4Z = 4
Mr = 339.15F(000) = 680
Triclinic, P1Dx = 1.713 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0192 (4) ÅCell parameters from 9951 reflections
b = 10.2689 (5) Åθ = 2.3–27.7°
c = 14.4092 (6) ŵ = 3.14 mm1
α = 82.269 (2)°T = 100 K
β = 83.969 (2)°Block, colourless
γ = 87.845 (2)°0.24 × 0.20 × 0.10 mm
V = 1314.72 (10) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer7631 independent reflections
Radiation source: fine-focus sealed tube5583 reflections with I > 2σ(I)
graphiteRint = 0.000
[var phi] and ω scansθmax = 30.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −12→12
Tmin = 0.526, Tmax = 0.740k = −14→14
7631 measured reflectionsl = −6→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0079P)2 + 15.1445P] where P = (Fo2 + 2Fc2)/3
7631 reflections(Δ/σ)max < 0.001
364 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = −1.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1A0.79304 (8)0.52547 (8)0.47978 (5)0.03121 (19)
N1A0.6074 (6)0.6549 (5)0.7230 (4)0.0196 (10)
H1N10.63390.63240.77900.023*
N2A0.3893 (6)0.7645 (6)0.7726 (4)0.0236 (11)
H2NA0.28720.78620.77310.02 (2)*
H3NA0.42310.72810.83350.03 (2)*
C1A0.7009 (7)0.6012 (7)0.6581 (4)0.0223 (13)
H1AA0.78940.55960.67490.027*
C2A0.6649 (7)0.6083 (7)0.5678 (4)0.0223 (13)
C3A0.5324 (7)0.6715 (7)0.5428 (4)0.0243 (13)
H3AA0.50770.67660.48130.029*
C4A0.4383 (8)0.7262 (7)0.6095 (4)0.0244 (13)
H4AA0.35050.76960.59320.029*
C5A0.4765 (7)0.7158 (6)0.7033 (4)0.0206 (12)
H2O31.05380.75710.58150.031*
Br1B0.69848 (8)0.98559 (8)0.01879 (5)0.03200 (19)
N1B0.8885 (6)0.8524 (6)0.2596 (4)0.0221 (11)
H2N10.85150.84320.32230.027*
N2B1.0992 (7)0.7300 (6)0.2998 (4)0.0261 (12)
H3N21.20480.70460.28160.031*
H4N21.08820.75770.35020.031*
C1B0.7963 (7)0.9101 (7)0.1972 (4)0.0222 (13)
H1BA0.71190.95710.21800.027*
C2B0.8265 (7)0.8995 (7)0.1045 (4)0.0229 (13)
C3B0.9539 (8)0.8290 (7)0.0737 (5)0.0257 (14)
H3BA0.97550.82160.01010.031*
C4B1.0461 (8)0.7713 (7)0.1368 (4)0.0245 (13)
H4BA1.13050.72370.11680.029*
C5B1.0122 (7)0.7843 (7)0.2339 (4)0.0222 (13)
O1B0.7873 (6)0.9253 (6)0.4244 (3)0.0348 (13)
O2B0.9788 (5)0.8164 (5)0.4822 (3)0.0255 (10)
O3B1.0802 (6)0.7552 (5)0.6291 (3)0.0301 (11)
O4B1.0764 (6)0.8386 (5)0.7617 (3)0.0291 (11)
C10B0.8034 (7)0.9257 (6)0.5868 (4)0.0195 (12)
C6B0.7961 (8)0.9415 (7)0.7535 (4)0.0232 (13)
H6BA0.83860.92330.81010.028*
C7B0.6601 (8)1.0105 (7)0.7525 (5)0.0252 (13)
H7BA0.61221.03620.80770.030*
C8B0.5967 (8)1.0405 (7)0.6684 (5)0.0253 (13)
H8BA0.50741.08840.66630.030*
C9B0.6676 (7)0.9984 (7)0.5881 (4)0.0216 (12)
H9BA0.62391.01880.53210.026*
C11B0.8708 (7)0.8986 (6)0.6729 (4)0.0202 (12)
C12B0.8597 (7)0.8867 (6)0.4919 (4)0.0200 (12)
C13B1.0179 (7)0.8290 (7)0.6895 (5)0.0233 (13)
O1A0.4113 (6)0.6654 (5)1.2511 (3)0.0313 (11)
O2A0.3986 (6)0.7420 (5)1.1025 (3)0.0284 (11)
H1OA0.46300.78311.06270.043*
O3A0.5145 (5)0.6946 (5)0.9528 (3)0.0271 (10)
O4A0.7025 (6)0.5820 (6)0.8916 (3)0.0344 (13)
C6A0.8161 (7)0.5016 (7)1.0550 (4)0.0222 (13)
H6AB0.85720.47620.99810.027*
C7A0.8877 (7)0.4632 (7)1.1348 (5)0.0247 (13)
H7AB0.97660.41451.13090.030*
C8A0.8256 (8)0.4979 (7)1.2215 (4)0.0245 (13)
H8AB0.87360.47411.27550.029*
C9A0.6919 (7)0.5682 (6)1.2255 (4)0.0219 (12)
H9AB0.65060.59021.28340.026*
C10A0.6164 (7)0.6075 (6)1.1468 (4)0.0197 (12)
C11A0.6819 (7)0.5788 (6)1.0570 (4)0.0190 (12)
C12A0.4671 (8)0.6747 (7)1.1692 (5)0.0240 (13)
C13A0.6295 (7)0.6207 (7)0.9607 (4)0.0215 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br1A0.0271 (4)0.0455 (4)0.0232 (3)−0.0034 (3)0.0011 (3)−0.0148 (3)
N1A0.022 (3)0.024 (3)0.013 (2)−0.003 (2)−0.0037 (19)−0.0040 (19)
N2A0.022 (3)0.030 (3)0.020 (3)−0.001 (2)−0.002 (2)−0.006 (2)
C1A0.020 (3)0.026 (3)0.021 (3)−0.005 (2)−0.002 (2)−0.004 (2)
C2A0.024 (3)0.030 (3)0.014 (3)−0.008 (3)0.003 (2)−0.008 (2)
C3A0.026 (3)0.033 (4)0.017 (3)−0.007 (3)−0.006 (2)−0.008 (3)
C4A0.023 (3)0.030 (4)0.020 (3)−0.005 (3)−0.007 (2)0.000 (2)
C5A0.022 (3)0.022 (3)0.019 (3)−0.005 (2)−0.003 (2)−0.004 (2)
Br1B0.0262 (4)0.0485 (5)0.0208 (3)−0.0002 (3)−0.0066 (3)0.0002 (3)
N1B0.023 (3)0.028 (3)0.016 (2)0.000 (2)0.001 (2)−0.006 (2)
N2B0.028 (3)0.031 (3)0.019 (3)0.004 (2)0.000 (2)−0.004 (2)
C1B0.021 (3)0.024 (3)0.022 (3)−0.005 (2)−0.002 (2)−0.004 (2)
C2B0.022 (3)0.028 (3)0.020 (3)−0.005 (3)−0.004 (2)−0.004 (2)
C3B0.028 (3)0.030 (4)0.019 (3)−0.006 (3)0.003 (2)−0.009 (3)
C4B0.026 (3)0.029 (3)0.018 (3)0.000 (3)0.003 (2)−0.008 (2)
C5B0.024 (3)0.023 (3)0.019 (3)−0.005 (2)0.001 (2)−0.002 (2)
O1B0.036 (3)0.051 (3)0.018 (2)0.014 (3)−0.007 (2)−0.007 (2)
O2B0.022 (2)0.033 (3)0.021 (2)0.0008 (19)0.0014 (18)−0.0059 (19)
O3B0.034 (3)0.037 (3)0.020 (2)0.012 (2)−0.008 (2)−0.007 (2)
O4B0.029 (3)0.033 (3)0.028 (2)0.003 (2)−0.014 (2)−0.004 (2)
C10B0.022 (3)0.021 (3)0.016 (3)−0.003 (2)−0.003 (2)−0.001 (2)
C6B0.033 (3)0.024 (3)0.014 (3)0.000 (3)−0.005 (2)−0.004 (2)
C7B0.030 (3)0.027 (3)0.019 (3)−0.003 (3)0.001 (3)−0.008 (2)
C8B0.023 (3)0.030 (4)0.024 (3)0.004 (3)−0.001 (2)−0.007 (3)
C9B0.023 (3)0.027 (3)0.015 (3)−0.002 (2)−0.001 (2)−0.002 (2)
C11B0.022 (3)0.021 (3)0.018 (3)−0.002 (2)−0.001 (2)−0.004 (2)
C12B0.020 (3)0.023 (3)0.016 (3)−0.002 (2)−0.001 (2)0.000 (2)
C13B0.020 (3)0.024 (3)0.026 (3)0.004 (2)−0.008 (2)−0.004 (2)
O1A0.035 (3)0.033 (3)0.021 (2)0.008 (2)0.008 (2)0.002 (2)
O2A0.030 (3)0.035 (3)0.018 (2)0.009 (2)0.0023 (18)−0.0023 (19)
O3A0.027 (2)0.036 (3)0.019 (2)0.010 (2)−0.0050 (18)−0.0047 (19)
O4A0.033 (3)0.057 (4)0.013 (2)0.015 (3)−0.0048 (19)−0.005 (2)
C6A0.021 (3)0.029 (3)0.016 (3)0.000 (3)0.003 (2)−0.006 (2)
C7A0.021 (3)0.028 (3)0.022 (3)0.002 (3)0.001 (2)0.002 (3)
C8A0.026 (3)0.030 (3)0.018 (3)−0.003 (3)−0.005 (2)0.000 (2)
C9A0.028 (3)0.023 (3)0.014 (3)−0.002 (3)0.001 (2)−0.004 (2)
C10A0.023 (3)0.020 (3)0.016 (3)0.000 (2)0.002 (2)−0.005 (2)
C11A0.021 (3)0.022 (3)0.014 (3)−0.002 (2)0.002 (2)−0.004 (2)
C12A0.028 (3)0.020 (3)0.024 (3)0.002 (3)0.001 (3)−0.004 (2)
C13A0.022 (3)0.028 (3)0.015 (3)−0.004 (2)−0.002 (2)−0.002 (2)

Geometric parameters (Å, °)

Br1A—C2A1.891 (6)O3B—H2O30.7471
N1A—C1A1.352 (8)O4B—C13B1.231 (8)
N1A—C5A1.354 (8)C10B—C9B1.410 (9)
N1A—H1N10.8651C10B—C11B1.428 (8)
N2A—C5A1.343 (8)C10B—C12B1.508 (9)
N2A—H2NA0.9388C6B—C7B1.394 (10)
N2A—H3NA0.9814C6B—C11B1.396 (9)
C1A—C2A1.366 (9)C6B—H6BA0.9300
C1A—H1AA0.9300C7B—C8B1.385 (9)
C2A—C3A1.396 (10)C7B—H7BA0.9300
C3A—C4A1.378 (9)C8B—C9B1.375 (9)
C3A—H3AA0.9300C8B—H8BA0.9300
C4A—C5A1.418 (9)C9B—H9BA0.9300
C4A—H4AA0.9300C11B—C13B1.510 (9)
Br1B—C2B1.889 (7)O1A—C12A1.226 (8)
N1B—C5B1.340 (8)O2A—C12A1.302 (8)
N1B—C1B1.352 (8)O2A—H1OA0.8532
N1B—H2N10.9235O3A—C13A1.267 (8)
N2B—C5B1.345 (8)O4A—C13A1.239 (8)
N2B—H3N20.9952C6A—C7A1.381 (9)
N2B—H4N20.8108C6A—C11A1.421 (9)
C1B—C2B1.353 (9)C6A—H6AB0.9300
C1B—H1BA0.9300C7A—C8A1.399 (9)
C2B—C3B1.400 (10)C7A—H7AB0.9300
C3B—C4B1.359 (10)C8A—C9A1.382 (9)
C3B—H3BA0.9300C8A—H8AB0.9300
C4B—C5B1.423 (9)C9A—C10A1.389 (9)
C4B—H4BA0.9300C9A—H9AB0.9300
O1B—C12B1.241 (8)C10A—C11A1.428 (8)
O2B—C12B1.277 (8)C10A—C12A1.514 (9)
O3B—C13B1.300 (8)C11A—C13A1.515 (8)
C1A—N1A—C5A123.1 (5)C7B—C6B—C11B122.4 (6)
C1A—N1A—H1N1111.1C7B—C6B—H6BA118.8
C5A—N1A—H1N1124.9C11B—C6B—H6BA118.8
C5A—N2A—H2NA126.7C8B—C7B—C6B119.4 (6)
C5A—N2A—H3NA109.3C8B—C7B—H7BA120.3
H2NA—N2A—H3NA115.7C6B—C7B—H7BA120.3
N1A—C1A—C2A119.7 (6)C9B—C8B—C7B119.2 (6)
N1A—C1A—H1AA120.2C9B—C8B—H8BA120.4
C2A—C1A—H1AA120.2C7B—C8B—H8BA120.4
C1A—C2A—C3A119.9 (6)C8B—C9B—C10B123.0 (6)
C1A—C2A—Br1A118.9 (5)C8B—C9B—H9BA118.5
C3A—C2A—Br1A121.1 (5)C10B—C9B—H9BA118.5
C4A—C3A—C2A119.8 (6)C6B—C11B—C10B118.3 (6)
C4A—C3A—H3AA120.1C6B—C11B—C13B113.6 (6)
C2A—C3A—H3AA120.1C10B—C11B—C13B128.2 (6)
C3A—C4A—C5A119.4 (6)O1B—C12B—O2B121.6 (6)
C3A—C4A—H4AA120.3O1B—C12B—C10B118.0 (6)
C5A—C4A—H4AA120.3O2B—C12B—C10B120.4 (6)
N2A—C5A—N1A119.0 (6)O4B—C13B—O3B120.1 (6)
N2A—C5A—C4A122.9 (6)O4B—C13B—C11B120.0 (6)
N1A—C5A—C4A118.1 (6)O3B—C13B—C11B119.9 (6)
C5B—N1B—C1B122.7 (6)C12A—O2A—H1OA108.9
C5B—N1B—H2N1118.9C7A—C6A—C11A122.3 (6)
C1B—N1B—H2N1116.7C7A—C6A—H6AB118.9
C5B—N2B—H3N2120.3C11A—C6A—H6AB118.9
C5B—N2B—H4N2117.1C6A—C7A—C8A119.7 (6)
H3N2—N2B—H4N2112.4C6A—C7A—H7AB120.2
N1B—C1B—C2B120.1 (6)C8A—C7A—H7AB120.2
N1B—C1B—H1BA120.0C9A—C8A—C7A119.0 (6)
C2B—C1B—H1BA120.0C9A—C8A—H8AB120.5
C1B—C2B—C3B119.6 (6)C7A—C8A—H8AB120.5
C1B—C2B—Br1B119.0 (5)C8A—C9A—C10A122.8 (6)
C3B—C2B—Br1B121.4 (5)C8A—C9A—H9AB118.6
C4B—C3B—C2B120.0 (6)C10A—C9A—H9AB118.6
C4B—C3B—H3BA120.0C9A—C10A—C11A119.0 (6)
C2B—C3B—H3BA120.0C9A—C10A—C12A113.5 (5)
C3B—C4B—C5B119.3 (6)C11A—C10A—C12A127.5 (6)
C3B—C4B—H4BA120.3C6A—C11A—C10A117.1 (6)
C5B—C4B—H4BA120.3C6A—C11A—C13A113.9 (5)
N1B—C5B—N2B119.5 (6)C10A—C11A—C13A129.0 (6)
N1B—C5B—C4B118.2 (6)O1A—C12A—O2A120.2 (6)
N2B—C5B—C4B122.2 (6)O1A—C12A—C10A119.2 (6)
C13B—O3B—H2O3121.4O2A—C12A—C10A120.6 (6)
C9B—C10B—C11B117.6 (6)O4A—C13A—O3A122.0 (6)
C9B—C10B—C12B114.3 (5)O4A—C13A—C11A118.2 (6)
C11B—C10B—C12B128.1 (6)O3A—C13A—C11A119.8 (5)
C5A—N1A—C1A—C2A0.5 (10)C9B—C10B—C11B—C13B−177.0 (6)
N1A—C1A—C2A—C3A0.3 (10)C12B—C10B—C11B—C13B2.7 (11)
N1A—C1A—C2A—Br1A−177.1 (5)C9B—C10B—C12B—O1B2.9 (9)
C1A—C2A—C3A—C4A−0.1 (10)C11B—C10B—C12B—O1B−176.8 (6)
Br1A—C2A—C3A—C4A177.3 (5)C9B—C10B—C12B—O2B−177.4 (6)
C2A—C3A—C4A—C5A−0.9 (10)C11B—C10B—C12B—O2B2.9 (10)
C1A—N1A—C5A—N2A178.9 (6)C6B—C11B—C13B—O4B−15.4 (9)
C1A—N1A—C5A—C4A−1.6 (9)C10B—C11B—C13B—O4B163.8 (7)
C3A—C4A—C5A—N2A−178.8 (6)C6B—C11B—C13B—O3B162.2 (6)
C3A—C4A—C5A—N1A1.7 (10)C10B—C11B—C13B—O3B−18.6 (10)
C5B—N1B—C1B—C2B0.5 (10)C11A—C6A—C7A—C8A1.5 (10)
N1B—C1B—C2B—C3B−0.2 (10)C6A—C7A—C8A—C9A1.2 (10)
N1B—C1B—C2B—Br1B−178.2 (5)C7A—C8A—C9A—C10A−0.7 (10)
C1B—C2B—C3B—C4B0.2 (10)C8A—C9A—C10A—C11A−2.5 (10)
Br1B—C2B—C3B—C4B178.1 (5)C8A—C9A—C10A—C12A175.9 (6)
C2B—C3B—C4B—C5B−0.5 (10)C7A—C6A—C11A—C10A−4.6 (10)
C1B—N1B—C5B—N2B179.7 (6)C7A—C6A—C11A—C13A174.7 (6)
C1B—N1B—C5B—C4B−0.7 (10)C9A—C10A—C11A—C6A5.0 (9)
C3B—C4B—C5B—N1B0.7 (10)C12A—C10A—C11A—C6A−173.1 (6)
C3B—C4B—C5B—N2B−179.7 (7)C9A—C10A—C11A—C13A−174.2 (6)
C11B—C6B—C7B—C8B−1.2 (11)C12A—C10A—C11A—C13A7.7 (11)
C6B—C7B—C8B—C9B1.7 (10)C9A—C10A—C12A—O1A−14.9 (9)
C7B—C8B—C9B—C10B−0.2 (11)C11A—C10A—C12A—O1A163.3 (7)
C11B—C10B—C9B—C8B−1.7 (10)C9A—C10A—C12A—O2A164.9 (6)
C12B—C10B—C9B—C8B178.5 (6)C11A—C10A—C12A—O2A−16.9 (10)
C7B—C6B—C11B—C10B−0.7 (10)C6A—C11A—C13A—O4A2.3 (9)
C7B—C6B—C11B—C13B178.5 (6)C10A—C11A—C13A—O4A−178.5 (7)
C9B—C10B—C11B—C6B2.1 (9)C6A—C11A—C13A—O3A−177.0 (6)
C12B—C10B—C11B—C6B−178.2 (6)C10A—C11A—C13A—O3A2.2 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1N1···O4A0.861.802.664 (7)176
N2A—H2NA···O4Bi0.941.972.910 (8)175
N2A—H3NA···O3A0.981.972.930 (7)167
O3B—H2O3···O2B0.751.682.391 (6)159
N1B—H2N1···O1B0.921.822.647 (7)147
N2B—H3N2···O1Aii1.001.912.903 (8)176
N2B—H4N2···O2B0.812.202.971 (7)160
C4A—H4AA···O3Bi0.932.443.219 (9)141
C4B—H4BA···O2Aii0.932.423.175 (9)139

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5311).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Ballabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des.5, 1548–1553.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Dale, S. H., Elsegood, M. R. J., Hemmings, M. & Wilkinson, A. L. (2004). CrystEngComm, 6, 207–214.
  • Jessen, S. M. & Küppers, H. (1991). J. Mol. Struct.263, 247–265.
  • Küppers, H. (1978). Acta Cryst. B34, 3763–3765.
  • Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1932. [PMC free article] [PubMed]
  • Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1935–o1936. [PMC free article] [PubMed]
  • Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879. [PMC free article] [PubMed]
  • Schuckmann, W., Fuess, H. & Bats, J. W. (1978). Acta Cryst. B34, 3754–3756.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography