PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2327.
Published online 2010 August 18. doi:  10.1107/S1600536810032265
PMCID: PMC3008120

4-Hy­droxy-2-[(4-iodo­benzo­yl)meth­yl]-3-(3-meth­oxy­benzo­yl)-2H-1,2-benzothia­zine 1,1-dioxide

Abstract

In the title mol­ecule, C24H18INO6S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.381 (5) and −0.449 (5) Å, respectively, from the plane formed by the remaining atoms in the ring; the puckering parameters are Q = 0.550 (2) Å, θ = 61.7 (2)° and ϕ = 31.4 (3)°. The conformation is stabilized by an intra­molecular O—H(...)O hydrogen bond. The two nonfused benzene rings lie almost parallel to each other [dihedral angle = 9.18 (4)°], with a separation of 3.754 (2) Å between the centres of gravity of the two rings, indicating strong π–π inter­actions.

Related literature

For biological applications of benzothia­zines, see: Lombardino & Wiseman (1972 [triangle]); Zinnes et al. (1982 [triangle]); Zia-ur-Rehman et al. (2005 [triangle]); Turck et al. (1996 [triangle]); Ahmad et al. (2010 [triangle]). For crystal structures of related compounds, see: Siddiqui et al. (2008 [triangle]); Gul et al. (2010 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2327-scheme1.jpg

Experimental

Crystal data

  • C24H18INO6S
  • M r = 575.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2327-efi1.jpg
  • a = 9.7392 (2) Å
  • b = 11.5288 (3) Å
  • c = 20.4634 (4) Å
  • β = 100.5288 (11)°
  • V = 2258.97 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.55 mm−1
  • T = 173 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.836, T max = 0.886
  • 16229 measured reflections
  • 3960 independent reflections
  • 3620 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.061
  • S = 1.08
  • 3960 reflections
  • 300 parameters
  • H-atom parameters constrained
  • Δρmax = 0.76 e Å−3
  • Δρmin = −0.83 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032265/pk2258sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032265/pk2258Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HLS is grateful to the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

supplementary crystallographic information

Comment

Benzothiazine nucleus occupies a significant position among heterocyclic compounds. Oxicams are benzothiazine derivatives which are in use for the treatment of various inflammatory diseases (Lombardino & Wiseman, 1972; Zinnes et al., 1982). Besides oxicams, numerous other benzothiazine compounds are found to possess antimicrobial (Zia-ur-Rehman et al., 2005), analgesic (Turck et al., 1996), antioxidant activities (Ahmad et al., 2010). In this paper, we report the synthesis and crystal structure of the title compound.

The structure of the title compound contains independent molecules separated by normal van der Waals distances (Fig. 1). The heterocyclic thiazine ring adopts a half-chair conformation, with atoms S1 and N1 displaced by 0.381 (5) and -0.449 (5) Å, respectively, from the plane formed by atoms C1/C6/C7/C8; the puckering parameters (Cremer & Pople, 1975) are: Q = 0.550 (2) Å, θ = 61.7 (2)° and [var phi] = 31.4 (3)°. Similar conformations of the corresponding rings have been reported in some closely related compounds (Siddiqui et al., 2008). Unlike the structure of 4-hydroxy-3-(3-methoxy)benzoyl-2-(3-methoxy)phenacyl-2H-1,2- benzothiazine 1,1-dioxide (Gul et al., 2010) where in the carbon fragments C1–C15 and C17–C24 were more or less planar individually and lie at an angle 77.17 (2)° with respect to each other, the benzene rings C10–C15 and C19–C24 in the title compound, lie almost parallel to each other (dihedral angle 9.18 (4)°) with a separation of 3.754 (2) Å between the centers of gravity of the two rings indicating strong π–π interactions.

The structure is stabilized by intramolecular interactions C11—H11···N1 and O3—H3O···O4 resulting in six membered rings and C17—H17A···O2 forming a five membered ring (Table 1).

Experimental

4-Hydroxy-1,1-dioxido-2H-1,2-benzothiazin-3-yl)(3-methoxyphenyl) methanone (2.0 g, 6.0 mmol), K2CO3 (1.24 g, 9.0 mmol), 4-iodophenacyl bromide (2.01 g, 6.2 mmol) and acetonitrile (25 ml) were refluxed for 6 h. The completion of reaction was monitored by TLC. After cooling to room temperature, the reaction mixture was poured into ice cold water. Yellow precipitates of the title compound obtained were filtered, washed with cold water and dried. The crystals suitable for X-ray crystallographic analysis were grown from a solution of methanol and chloroform (1:1).

Refinement

The H-atoms were located from difference Fourier maps and were included in the refinement at geometrically idealized positions in riding-model approximation with O—H = 0.84 Å and C—H = 0.95–0.99 Å; the Uiso(H) were allowed at 1.2Ueq(C) or 1.5Ueq(O). The final difference map was essentially featurless.

Figures

Fig. 1.
The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).

Crystal data

C24H18INO6SF(000) = 1144
Mr = 575.35Dx = 1.692 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5266 reflections
a = 9.7392 (2) Åθ = 1.0–27.5°
b = 11.5288 (3) ŵ = 1.55 mm1
c = 20.4634 (4) ÅT = 173 K
β = 100.5288 (11)°Prism, yellow
V = 2258.97 (9) Å30.12 × 0.10 × 0.08 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer3960 independent reflections
Radiation source: fine-focus sealed tube3620 reflections with I > 2σ(I)
graphiteRint = 0.017
ω and [var phi] scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −11→11
Tmin = 0.836, Tmax = 0.886k = −13→13
16229 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.061H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0174P)2 + 2.9397P] where P = (Fo2 + 2Fc2)/3
3960 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = −0.83 e Å3

Special details

Experimental. Yield: 1.96 g, 70%, m.p. 413–414 K, IR (KBr, νmax): 2957, 1682, 1340, 1128 cm-1, EI–MS (m/z): 575.0
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.309451 (19)0.222186 (19)0.434249 (8)0.04263 (8)
S1−0.12938 (6)0.42205 (5)0.72012 (3)0.02558 (14)
O1−0.15136 (17)0.53974 (15)0.69887 (9)0.0335 (4)
O2−0.18899 (17)0.33084 (16)0.67691 (9)0.0330 (4)
O30.1160 (2)0.56345 (19)0.89527 (10)0.0465 (5)
H3O0.19210.58750.88670.070*
O40.30729 (19)0.59168 (17)0.82968 (11)0.0448 (5)
O50.1389 (2)0.5711 (2)0.54065 (11)0.0515 (6)
O60.33468 (18)0.27269 (16)0.77976 (9)0.0310 (4)
N10.04075 (19)0.40214 (17)0.73891 (10)0.0239 (4)
C1−0.1770 (3)0.4068 (2)0.79852 (12)0.0281 (5)
C2−0.3034 (3)0.3567 (2)0.80468 (14)0.0346 (6)
H2−0.36410.32660.76680.042*
C3−0.3395 (3)0.3513 (3)0.86691 (16)0.0465 (7)
H3−0.42600.31780.87200.056*
C4−0.2503 (4)0.3946 (3)0.92140 (17)0.0563 (9)
H4−0.27650.39170.96390.068*
C5−0.1229 (3)0.4422 (3)0.91516 (15)0.0495 (8)
H5−0.06210.47050.95350.059*
C6−0.0831 (3)0.4489 (2)0.85358 (13)0.0334 (6)
C70.0526 (3)0.4997 (2)0.84576 (14)0.0343 (6)
C80.1083 (2)0.4833 (2)0.78869 (13)0.0277 (5)
C90.2346 (3)0.5410 (2)0.78018 (15)0.0350 (6)
C100.2832 (3)0.5437 (2)0.71554 (15)0.0337 (6)
C110.1901 (3)0.5553 (2)0.65576 (15)0.0359 (6)
H110.09270.56020.65560.043*
C120.2394 (3)0.5599 (2)0.59636 (16)0.0403 (7)
C130.3816 (3)0.5525 (3)0.59645 (17)0.0448 (7)
H130.41540.55430.55570.054*
C140.4742 (3)0.5427 (3)0.65634 (17)0.0461 (8)
H140.57160.53860.65640.055*
C150.4271 (3)0.5388 (2)0.71568 (16)0.0403 (7)
H150.49150.53280.75640.048*
C160.1815 (4)0.5671 (4)0.47757 (17)0.0605 (10)
H16A0.09880.56740.44220.073*
H16B0.23550.49630.47450.073*
H16C0.23940.63500.47270.073*
C170.0871 (3)0.2799 (2)0.75191 (12)0.0251 (5)
H17A0.02140.22650.72400.030*
H17B0.08900.26020.79920.030*
C180.2332 (3)0.2673 (2)0.73533 (12)0.0250 (5)
C190.2470 (3)0.2523 (2)0.66453 (12)0.0256 (5)
C200.1333 (3)0.2615 (2)0.61251 (13)0.0292 (6)
H200.04260.27410.62200.035*
C210.1508 (3)0.2524 (2)0.54714 (13)0.0334 (6)
H210.07310.26030.51190.040*
C220.2828 (3)0.2318 (2)0.53356 (13)0.0313 (6)
C230.3973 (3)0.2196 (3)0.58470 (14)0.0355 (6)
H230.48720.20370.57500.043*
C240.3789 (3)0.2308 (2)0.64959 (13)0.0320 (6)
H240.45720.22380.68470.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.03981 (12)0.06393 (15)0.02580 (11)−0.00825 (9)0.01039 (8)−0.00513 (8)
S10.0217 (3)0.0240 (3)0.0290 (3)−0.0021 (2)−0.0009 (2)0.0009 (2)
O10.0263 (9)0.0271 (9)0.0435 (11)0.0010 (7)−0.0030 (8)0.0076 (8)
O20.0305 (9)0.0333 (10)0.0335 (10)−0.0090 (8)0.0016 (8)−0.0047 (8)
O30.0362 (11)0.0499 (13)0.0488 (12)−0.0011 (10)−0.0046 (9)−0.0239 (10)
O40.0290 (10)0.0373 (11)0.0609 (13)−0.0048 (8)−0.0103 (9)−0.0153 (10)
O50.0337 (10)0.0716 (16)0.0476 (13)0.0016 (10)0.0034 (9)0.0235 (11)
O60.0295 (9)0.0363 (10)0.0248 (9)0.0047 (8)−0.0017 (8)0.0009 (8)
N10.0211 (10)0.0205 (10)0.0281 (11)−0.0006 (8)−0.0011 (8)−0.0003 (8)
C10.0288 (13)0.0257 (13)0.0294 (13)0.0046 (10)0.0040 (10)0.0006 (10)
C20.0311 (13)0.0314 (15)0.0417 (15)0.0026 (11)0.0074 (12)0.0027 (12)
C30.0421 (16)0.0507 (19)0.0509 (18)0.0010 (15)0.0194 (14)0.0049 (15)
C40.062 (2)0.072 (2)0.0396 (17)0.0041 (18)0.0203 (16)0.0002 (17)
C50.0495 (18)0.061 (2)0.0362 (16)0.0040 (16)0.0044 (14)−0.0104 (15)
C60.0328 (13)0.0322 (15)0.0341 (14)0.0061 (11)0.0029 (11)−0.0045 (11)
C70.0291 (13)0.0288 (14)0.0403 (15)0.0056 (11)−0.0066 (11)−0.0076 (12)
C80.0231 (12)0.0223 (12)0.0340 (14)0.0038 (10)−0.0048 (10)−0.0031 (11)
C90.0256 (13)0.0203 (13)0.0540 (17)0.0053 (10)−0.0059 (12)−0.0003 (12)
C100.0239 (12)0.0187 (13)0.0559 (17)−0.0031 (10)0.0004 (12)0.0030 (12)
C110.0221 (12)0.0288 (14)0.0542 (17)−0.0044 (11)0.0001 (12)0.0113 (13)
C120.0321 (14)0.0317 (15)0.0551 (18)−0.0028 (12)0.0030 (13)0.0171 (13)
C130.0318 (14)0.0421 (17)0.062 (2)−0.0022 (13)0.0123 (14)0.0108 (15)
C140.0235 (13)0.0397 (17)0.074 (2)−0.0025 (12)0.0065 (14)0.0071 (16)
C150.0230 (13)0.0295 (15)0.063 (2)−0.0016 (11)−0.0053 (13)0.0036 (14)
C160.0512 (19)0.078 (3)0.053 (2)0.0050 (18)0.0125 (16)0.0238 (19)
C170.0303 (13)0.0198 (12)0.0252 (12)0.0014 (10)0.0049 (10)−0.0005 (10)
C180.0303 (13)0.0178 (12)0.0262 (13)0.0029 (10)0.0033 (11)0.0017 (10)
C190.0270 (12)0.0248 (13)0.0239 (12)0.0013 (10)0.0019 (10)0.0019 (10)
C200.0249 (12)0.0365 (15)0.0259 (13)−0.0008 (11)0.0035 (10)0.0013 (11)
C210.0265 (13)0.0463 (16)0.0254 (13)−0.0035 (12)−0.0007 (10)0.0014 (12)
C220.0337 (14)0.0378 (15)0.0230 (13)−0.0045 (12)0.0072 (11)−0.0024 (11)
C230.0260 (13)0.0472 (17)0.0335 (15)0.0013 (12)0.0063 (11)−0.0031 (13)
C240.0257 (13)0.0403 (16)0.0277 (14)0.0034 (11)−0.0014 (10)−0.0014 (11)

Geometric parameters (Å, °)

I1—C222.098 (3)C10—C111.389 (4)
S1—O21.4272 (18)C10—C151.402 (4)
S1—O11.4290 (18)C11—C121.387 (4)
S1—N11.6472 (19)C11—H110.9500
S1—C11.758 (3)C12—C131.388 (4)
O3—C71.311 (3)C13—C141.387 (4)
O3—H3O0.8400C13—H130.9500
O4—C91.267 (3)C14—C151.375 (4)
O5—C121.366 (4)C14—H140.9500
O5—C161.427 (4)C15—H150.9500
O6—C181.216 (3)C16—H16A0.9800
N1—C81.450 (3)C16—H16B0.9800
N1—C171.489 (3)C16—H16C0.9800
C1—C21.386 (4)C17—C181.530 (3)
C1—C61.402 (4)C17—H17A0.9900
C2—C31.383 (4)C17—H17B0.9900
C2—H20.9500C18—C191.489 (3)
C3—C41.376 (5)C19—C201.393 (3)
C3—H30.9500C19—C241.396 (4)
C4—C51.383 (5)C20—C211.383 (4)
C4—H40.9500C20—H200.9500
C5—C61.387 (4)C21—C221.384 (4)
C5—H50.9500C21—H210.9500
C6—C71.480 (4)C22—C231.390 (4)
C7—C81.388 (4)C23—C241.378 (4)
C8—C91.437 (4)C23—H230.9500
C9—C101.484 (4)C24—H240.9500
O2—S1—O1119.32 (11)O5—C12—C13124.7 (3)
O2—S1—N1108.66 (10)C11—C12—C13120.1 (3)
O1—S1—N1106.96 (10)C14—C13—C12119.6 (3)
O2—S1—C1110.27 (12)C14—C13—H13120.2
O1—S1—C1108.82 (12)C12—C13—H13120.2
N1—S1—C1101.24 (11)C15—C14—C13121.0 (3)
C7—O3—H3O109.5C15—C14—H14119.5
C12—O5—C16118.0 (2)C13—C14—H14119.5
C8—N1—C17113.69 (18)C14—C15—C10119.5 (3)
C8—N1—S1112.47 (15)C14—C15—H15120.3
C17—N1—S1115.63 (15)C10—C15—H15120.3
C2—C1—C6122.1 (2)O5—C16—H16A109.5
C2—C1—S1120.8 (2)O5—C16—H16B109.5
C6—C1—S1117.17 (19)H16A—C16—H16B109.5
C3—C2—C1118.8 (3)O5—C16—H16C109.5
C3—C2—H2120.6H16A—C16—H16C109.5
C1—C2—H2120.6H16B—C16—H16C109.5
C4—C3—C2120.0 (3)N1—C17—C18108.30 (19)
C4—C3—H3120.0N1—C17—H17A110.0
C2—C3—H3120.0C18—C17—H17A110.0
C3—C4—C5120.9 (3)N1—C17—H17B110.0
C3—C4—H4119.6C18—C17—H17B110.0
C5—C4—H4119.6H17A—C17—H17B108.4
C4—C5—C6120.7 (3)O6—C18—C19121.9 (2)
C4—C5—H5119.6O6—C18—C17119.4 (2)
C6—C5—H5119.6C19—C18—C17118.7 (2)
C5—C6—C1117.5 (3)C20—C19—C24118.7 (2)
C5—C6—C7121.6 (3)C20—C19—C18122.3 (2)
C1—C6—C7120.9 (2)C24—C19—C18118.9 (2)
O3—C7—C8121.7 (2)C21—C20—C19120.8 (2)
O3—C7—C6116.2 (2)C21—C20—H20119.6
C8—C7—C6122.1 (2)C19—C20—H20119.6
C7—C8—C9120.9 (2)C20—C21—C22119.4 (2)
C7—C8—N1118.8 (2)C20—C21—H21120.3
C9—C8—N1120.2 (2)C22—C21—H21120.3
O4—C9—C8118.8 (3)C21—C22—C23120.9 (2)
O4—C9—C10118.7 (2)C21—C22—I1119.18 (19)
C8—C9—C10122.5 (2)C23—C22—I1119.96 (19)
C11—C10—C15119.8 (3)C24—C23—C22119.2 (2)
C11—C10—C9121.6 (2)C24—C23—H23120.4
C15—C10—C9118.6 (3)C22—C23—H23120.4
C12—C11—C10120.1 (2)C23—C24—C19121.0 (2)
C12—C11—H11120.0C23—C24—H24119.5
C10—C11—H11120.0C19—C24—H24119.5
O5—C12—C11115.2 (2)
O2—S1—N1—C8−173.39 (16)C7—C8—C9—C10−168.2 (2)
O1—S1—N1—C856.56 (19)N1—C8—C9—C1014.9 (4)
C1—S1—N1—C8−57.30 (19)O4—C9—C10—C11−141.7 (3)
O2—S1—N1—C17−40.51 (19)C8—C9—C10—C1138.2 (4)
O1—S1—N1—C17−170.56 (17)O4—C9—C10—C1535.8 (4)
C1—S1—N1—C1775.58 (18)C8—C9—C10—C15−144.3 (3)
O2—S1—C1—C2−30.4 (2)C15—C10—C11—C121.2 (4)
O1—S1—C1—C2102.2 (2)C9—C10—C11—C12178.7 (3)
N1—S1—C1—C2−145.3 (2)C16—O5—C12—C11−175.2 (3)
O2—S1—C1—C6150.53 (19)C16—O5—C12—C134.5 (4)
O1—S1—C1—C6−76.8 (2)C10—C11—C12—O5179.8 (2)
N1—S1—C1—C635.6 (2)C10—C11—C12—C130.1 (4)
C6—C1—C2—C32.0 (4)O5—C12—C13—C14179.2 (3)
S1—C1—C2—C3−177.0 (2)C11—C12—C13—C14−1.1 (4)
C1—C2—C3—C4−0.4 (5)C12—C13—C14—C150.7 (5)
C2—C3—C4—C5−1.0 (5)C13—C14—C15—C100.6 (4)
C3—C4—C5—C60.9 (5)C11—C10—C15—C14−1.6 (4)
C4—C5—C6—C10.6 (5)C9—C10—C15—C14−179.2 (3)
C4—C5—C6—C7179.9 (3)C8—N1—C17—C18−74.6 (2)
C2—C1—C6—C5−2.0 (4)S1—N1—C17—C18153.04 (16)
S1—C1—C6—C5177.0 (2)N1—C17—C18—O697.6 (3)
C2—C1—C6—C7178.7 (2)N1—C17—C18—C19−80.6 (3)
S1—C1—C6—C7−2.3 (3)O6—C18—C19—C20−171.2 (2)
C5—C6—C7—O3−16.8 (4)C17—C18—C19—C206.9 (3)
C1—C6—C7—O3162.5 (2)O6—C18—C19—C247.4 (4)
C5—C6—C7—C8164.7 (3)C17—C18—C19—C24−174.5 (2)
C1—C6—C7—C8−16.0 (4)C24—C19—C20—C21−1.6 (4)
O3—C7—C8—C9−3.4 (4)C18—C19—C20—C21177.0 (2)
C6—C7—C8—C9175.0 (2)C19—C20—C21—C221.3 (4)
O3—C7—C8—N1173.5 (2)C20—C21—C22—C230.3 (4)
C6—C7—C8—N1−8.0 (4)C20—C21—C22—I1−178.5 (2)
C17—N1—C8—C7−85.5 (3)C21—C22—C23—C24−1.4 (4)
S1—N1—C8—C748.3 (3)I1—C22—C23—C24177.4 (2)
C17—N1—C8—C991.4 (3)C22—C23—C24—C191.0 (4)
S1—N1—C8—C9−134.7 (2)C20—C19—C24—C230.5 (4)
C7—C8—C9—O411.6 (4)C18—C19—C24—C23−178.2 (2)
N1—C8—C9—O4−165.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.841.762.509 (3)147
C11—H11···N10.952.613.006 (3)106
C17—H17A···O20.992.422.902 (3)109

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2258).

References

  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem.45, 698–704. [PubMed]
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gul, S., Siddiqui, H. L., Ahmad, M., Nisar, M. & Parvez, M. (2010). Acta Cryst. E66, o2314–o2315. [PMC free article] [PubMed]
  • Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem.15, 848–849. [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [PubMed]
  • Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol.36, 79–84. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc.54, 1171–1175.
  • Zinnes, H., Sircar, J. C., Lindo, N., Schwartz, M. L., Fabian, A. C., Shavel, J. Jr, Kasulanis, C. F., Genzer, J. D., Lutomski, C. & DiPasquale, G. (1982). J. Med. Chem.25, 12–18. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography