PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1103.
Published online 2010 August 18. doi:  10.1107/S1600536810031958
PMCID: PMC3008115

1,4,8,11-Tetra­azoniacyclo­tetradecane diaqua­tetra­chloridomanganese(II) dichloride dihydrate

Abstract

The title compound, (C10H28N4)[MnCl4(H2O)2]Cl2·2H2O, consists of isolated octa­hedral [MnCl4(H2O)2]2− anions, tetra­protonated 1,4,8,11-tetra­azoniacyclo­tetradecane cations, chloride anions and water mol­ecules connected by a network of hydrogen bonds. The MnII atom is situated on an inversion centre, and the 1,4,8,11-tetra­azoniacyclo­tetradecane cation is located on a mirror plane.

Related literature

For bond distances and angles in the cyclam mol­ecule, see: Melson (1979 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1103-scheme1.jpg

Experimental

Crystal data

  • (C10H28N4)[MnCl4(H2O)2]Cl2·2H2O
  • M r = 544.1
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1103-efi1.jpg
  • a = 14.8492 (2) Å
  • b = 19.3511 (3) Å
  • c = 7.8772 (1) Å
  • V = 2263.50 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.31 mm−1
  • T = 292 K
  • 0.36 × 0.22 × 0.16 mm

Data collection

  • Oxford Diffraction CCD diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2005 [triangle]) T min = 0.721, T max = 0.840
  • 26200 measured reflections
  • 2429 independent reflections
  • 1999 reflections with I > 3σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.059
  • S = 1.09
  • 2429 reflections
  • 133 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.10 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: JANA2006 and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810031958/bt5316sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031958/bt5316Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the institutional research plan No. AVOZ10100521 of the Institute of Physics, the project Praemium Academiae of the Academy of Sciences of the Czech Republic and Unité associée au CNRST (URAC 19).

supplementary crystallographic information

Comment

The structure contains isolated [MnCl4(H2O)2]2- octahedron and centrosymmetric tetraprotonated 1,4,8,11-tetraazacyclodecane (cyclamH44+) moieties connected by a network of N—H···X (X= O, Cl) hydrogen bonds (Fig. 1). The positive charge of the cyclamH44+ is out-balanced beside the octahedral anion with two chloride ions. Two molecules of water participate in the manganese coordination, whereas the third water molecule forms bridge between chloride anion (Cl4), nitrogen atom (N1) in 1,4,8,11-tetraazacyclodecane (cyclam) and water (O1) molecule in [MnCl4(H2O)2]. The cyclam molecules and [MnCl4(H2O)2] octahedral are arranged into alternating layers parallel with ab. In direction of c axis the cyclam molecules form infinite channels (Fig. 2). The molecules of cyclam are in a distance of 7.877 Å with chloride anion between the middle CH2 groups in propyl chains (C6···Cl4 3.952 Å, Cl4···C6 3.923Å on one side and C4···Cl3 3.855 Å, Cl3···C4 4.022Å on the other side of channels). The tetra-protonated cyclam (C10H28N4)4+ exhibits C—C, C—N bond distances and angles in the range usually found for the cyclam molecule (Melson, 1979). The tetra-protonated macrocycle adopts an endodentate quadrangular (3,4,3,4)-A conformation which is the most stable among the four possible conformations, the exo orientation of the four nitrogen atoms gives rise to the maximal charge separation. The free water molecule participates also in a cyclic system of hydrogen bonds between water (O1) molecule coordinated to manganese and chloride anions (Cl3 and Cl4). The six-membered cycle is formed by hydrogen bonds between O1—H1o···O2—H2o···Cl4···H2o—O2···H1o—O1—H1p···Cl3···H1p—O1 (Fig. 4).

Experimental

To an acidic solution of cyclam (1 mmol) was added MnCl2.4H2O (1 mmol) in 10 ml of distilled water. The mixture was then stirred at room temperature for 3 h after which it was left to evaporate in air. After three weeks, crystals appeared, which were filtered off and washed with 90% ethanol solution.

Refinement

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. Despite of it the hydrogen atoms bonded to carbon and nitrogen atoms were constrained to ideal positions. The O—H distances were restrained to 0.82 Å with sigma 0.01. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.)

Figures

Fig. 1.
View of the cyclamH44+ cation, the [MnCl4(H2O)2]2- anion, free water molecule and chloride anions, together with atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
Fig. 2.
Projection along the c axis, showing the channels formed by the cyclam cavity.

Crystal data

(C10H28N4)[MnCl4(H2O)2]Cl2·2H2OF(000) = 1132
Mr = 544.1Dx = 1.596 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 16479 reflections
a = 14.8492 (2) Åθ = 2.5–26.5°
b = 19.3511 (3) ŵ = 1.31 mm1
c = 7.8772 (1) ÅT = 292 K
V = 2263.50 (5) Å3Prism, colourless
Z = 40.36 × 0.22 × 0.16 mm

Data collection

Oxford Diffraction CCD diffractometer2429 independent reflections
Radiation source: X-ray tube1999 reflections with I > 3σ(I)
graphiteRint = 0.026
Detector resolution: 8.3438 pixels mm-1θmax = 26.5°, θmin = 2.7°
Rotation method data acquisition using ω scansh = −18→18
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2005)k = −24→24
Tmin = 0.721, Tmax = 0.840l = −9→9
26200 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: difference Fourier map
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.09Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
2429 reflections(Δ/σ)max = 0.010
133 parametersΔρmax = 0.14 e Å3
Primary atom site location: structure-invariant direct methodsΔρmin = −0.10 e Å3

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid.
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.All the H atoms were discrenible in difference Fourier maps and could be refined to reasonable geometry. Despite of it the H atoms bonded to catbon and nitrogen atoms were constrained to ideal positions. The O—H distances were restrained to 0.82 Å with σ 0.01. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details,

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10000.01920 (9)
Cl1−0.06104 (2)0.040619 (17)0.28548 (4)0.02344 (10)
Cl30.03588 (3)0.250.10590 (6)0.02742 (14)
Cl20.14001 (2)−0.046308 (19)0.14869 (4)0.03195 (11)
Cl40.27203 (4)0.250.80690 (7)0.03300 (16)
O10.06526 (7)0.10208 (5)−0.04773 (13)0.0246 (3)
O20.24961 (7)0.11049 (6)−0.02640 (14)0.0323 (3)
N10.25833 (7)0.12044 (5)0.33251 (14)0.0211 (3)
N20.04152 (7)0.12050 (5)0.59062 (14)0.0203 (3)
C10.15939 (9)0.11683 (7)0.36796 (16)0.0212 (4)
C20.14089 (8)0.11699 (7)0.55731 (17)0.0206 (4)
C3−0.00618 (8)0.18592 (7)0.54150 (17)0.0217 (4)
C40.03729 (16)0.250.6165 (3)0.0314 (6)
C50.30646 (9)0.18591 (6)0.38037 (17)0.0228 (4)
C60.26338 (16)0.250.3046 (3)0.0329 (7)
H1m0.2680450.1113730.2258950.0253*
H1n0.2851520.0853550.3795720.0253*
H2m0.0311590.1115260.6970620.0244*
H2n0.0150460.0854240.5428360.0244*
H1a0.1349920.0755610.3183880.0254*
H1b0.1298160.1555840.316190.0254*
H2a0.1650290.075690.6072050.0247*
H2b0.1699810.1560820.6085220.0247*
H3a−0.0679280.1834510.5770830.026*
H3n−0.0076090.189810.4200390.026*
H4a0.1004760.250.5907040.0377*
H4b0.0292520.250.7374190.0377*
H5a0.3681810.183120.3447490.0273*
H5b0.3080950.1901110.501760.0273*
H6a0.2000570.250.3291670.0394*
H6b0.2720470.250.1837830.0394*
H2o0.2545 (12)0.1474 (6)−0.080 (2)0.0387*
H2p0.2810 (10)0.0859 (8)−0.085 (2)0.0387*
H1o0.1201 (6)0.1002 (8)−0.042 (2)0.0296*
H1p0.0475 (11)0.1365 (6)0.0039 (18)0.0296*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.02119 (16)0.01807 (15)0.01834 (15)0.00097 (11)−0.00088 (10)0.00132 (11)
Cl10.0257 (2)0.02367 (17)0.02098 (17)0.00260 (12)−0.00054 (12)−0.00266 (13)
Cl30.0298 (3)0.0235 (2)0.0290 (3)0−0.0005 (2)0
Cl20.0316 (2)0.0361 (2)0.02823 (19)0.01481 (15)−0.00806 (14)−0.00686 (15)
Cl40.0394 (3)0.0291 (3)0.0305 (3)0−0.0040 (2)0
O10.0262 (5)0.0217 (5)0.0260 (5)−0.0011 (4)0.0017 (4)−0.0027 (4)
O20.0351 (6)0.0327 (6)0.0290 (6)0.0005 (5)0.0060 (4)0.0008 (5)
N10.0225 (6)0.0184 (5)0.0224 (6)0.0031 (4)0.0018 (4)−0.0012 (5)
N20.0223 (6)0.0179 (5)0.0207 (6)−0.0024 (4)0.0023 (4)0.0014 (4)
C10.0198 (6)0.0208 (6)0.0230 (7)−0.0017 (5)−0.0010 (5)−0.0022 (5)
C20.0186 (6)0.0221 (6)0.0210 (6)0.0009 (5)−0.0010 (5)0.0026 (5)
C30.0191 (7)0.0200 (7)0.0259 (7)0.0011 (5)−0.0014 (5)0.0002 (6)
C40.0448 (13)0.0191 (9)0.0304 (11)0−0.0135 (10)0
C50.0185 (7)0.0214 (7)0.0285 (7)−0.0010 (5)−0.0013 (5)0.0002 (6)
C60.0451 (13)0.0208 (10)0.0327 (12)0−0.0135 (9)0

Geometric parameters (Å, °)

Mn1—Cl12.5488 (3)N2—H2n0.8700
Mn1—Cl1i2.5488 (3)C1—C21.5166 (18)
Mn1—Cl22.5490 (4)C1—H1a0.9600
Mn1—Cl2i2.5490 (4)C1—H1b0.9600
Mn1—O12.2322 (10)C2—H2a0.9600
Mn1—O1i2.2322 (10)C2—H2b0.9600
O1—H1o0.817 (9)C3—C41.5176 (18)
O1—H1p0.824 (13)C3—H3a0.9600
O2—H2o0.833 (13)C3—H3n0.9600
O2—H2p0.812 (15)C4—H4a0.960
N1—C11.4971 (17)C4—H4b0.960
N1—C51.5026 (16)C5—C61.5179 (18)
N1—H1m0.8700C5—H5a0.9600
N1—H1n0.8700C5—H5b0.9600
N2—C21.5004 (16)C6—H6a0.960
N2—C31.5013 (17)C6—H6b0.960
N2—H2m0.8700
Cl1—Mn1—Cl1i180C2—C1—H1b109.47
Cl1—Mn1—Cl289.601 (11)H1a—C1—H1b107.72
Cl1—Mn1—Cl2i90.399 (11)N2—C2—C1110.50 (10)
Cl1—Mn1—O191.72 (3)N2—C2—H2a109.47
Cl1—Mn1—O1i88.28 (3)N2—C2—H2b109.47
Cl1i—Mn1—Cl290.399 (11)C1—C2—H2a109.47
Cl1i—Mn1—Cl2i89.601 (11)C1—C2—H2b109.47
Cl1i—Mn1—O188.28 (3)H2a—C2—H2b108.42
Cl1i—Mn1—O1i91.72 (3)N2—C3—C4112.83 (11)
Cl2—Mn1—Cl2i180N2—C3—H3a109.47
Cl2—Mn1—O191.97 (3)N2—C3—H3n109.47
Cl2—Mn1—O1i88.03 (3)C4—C3—H3a109.47
Cl2i—Mn1—O188.03 (3)C4—C3—H3n109.47
Cl2i—Mn1—O1i91.97 (3)H3a—C3—H3n105.89
O1—Mn1—O1i180C3—C4—C3ii109.58 (15)
H1o—O1—H1p109.3 (16)C3—C4—H4a109.47
H2o—O2—H2p99.4 (15)C3—C4—H4b109.47
C1—N1—C5117.34 (10)C3ii—C4—H4a109.47
C1—N1—H1m109.47C3ii—C4—H4b109.47
C1—N1—H1n109.47H4a—C4—H4b109.4
C5—N1—H1m109.47N1—C5—C6112.94 (12)
C5—N1—H1n109.47N1—C5—H5a109.47
H1m—N1—H1n100.26N1—C5—H5b109.47
C2—N2—C3117.20 (10)C6—C5—H5a109.47
C2—N2—H2m109.47C6—C5—H5b109.47
C2—N2—H2n109.47H5a—C5—H5b105.77
C3—N2—H2m109.47C5—C6—C5ii109.58 (16)
C3—N2—H2n109.47C5—C6—H6a109.47
H2m—N2—H2n100.45C5—C6—H6b109.47
N1—C1—C2111.17 (10)C5ii—C6—H6a109.47
N1—C1—H1a109.47C5ii—C6—H6b109.47
N1—C1—H1b109.47H6a—C6—H6b109.4
C2—C1—H1a109.47

Symmetry codes: (i) −x, −y, −z; (ii) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1M···O20.872.012.8367 (16)159
N1—H1N···Cl2iii0.872.513.2465 (11)143
N1—H1N···Cl1iv0.872.773.2317 (11)115
O1—H1O···O20.816 (9)1.937 (9)2.7474 (15)171.5 (15)
O1—H1P···Cl30.824 (13)2.345 (12)3.1382 (10)161.8 (14)
N2—H2M···O1v0.872.082.8926 (15)155
N2—H2N···Cl10.872.483.2383 (11)146
O2—H2O···Cl4vi0.833 (13)2.192 (13)3.0205 (12)173.4 (14)
O2—H2P···Cl2vii0.810 (15)2.523 (16)3.2832 (11)156.8 (14)
C1—H1A···Cl20.962.713.6100 (14)156
C3—H3N···Cl30.962.813.7016 (14)155
C5—H5B···Cl40.962.723.6178 (14)156

Symmetry codes: (iii) −x+1/2, −y, z+1/2; (iv) x+1/2, y, −z+1/2; (v) x, y, z+1; (vi) x, y, z−1; (vii) −x+1/2, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5316).

References

  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds New York: Plenum.
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Praha, Czech Republic.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography