PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1060–m1061.
Published online 2010 August 4. doi:  10.1107/S1600536810030424
PMCID: PMC3008114

Dicyanidobis(N,N′-dimethythio­urea-κS)mercury(II)

Abstract

In the title complex, [Hg(CN)2(C3H8N2S)2], the HgII atom is located on a twofold rotation axis. It is four-coordinate having an irregular tetra­hedral geometry composed of two cyanide C atoms [Hg—C = 2.090 (6) Å] and two thione S atoms of N,N′-dimethyl­thio­urea (dmtu) [Hg—S = 2.7114 (9) Å]. The NC—Hg—CN bond angle of 148.83 (13)° has the greatest deviation from the ideal tetra­hedral geometry. The mol­ecular structure is stabilized by intra­molecular N—H(...)S inter­actions involving dmtu units related by the twofold symmetry. In the crystal, inter­molecular N—H(...)N(CN) hydrogen-bonding inter­actions link symmetry-related mol­ecules into a two-dimensional network in (110).

Related literature

For the biological applications of mercury(II) complexes of thi­o­nes, see: Akrivos (2001 [triangle]); Bell et al. (2001 [triangle]); Popovic et al. (2000 [triangle]). For background to mercury(II) complexes of thio­urea and its derivatives, see: Ahmad et al. (2009 [triangle]); Jiang et al. (2001 [triangle]); Lobana et al. (2008 [triangle]); Mufakkar et al. (2010 [triangle]); Nawaz et al. (2010 [triangle]); Popovic et al. (2000 [triangle]); Wu et al. (2004 [triangle]). For the crystal structures of cyanide complexes of d 10 metals, see: Ahmad et al. (2009 [triangle]); Altaf et al. (2010 [triangle]); Fettouhi et al. (2010 [triangle]); Hanif et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1060-scheme1.jpg

Experimental

Crystal data

  • [Hg(CN)2(C3H8N2S)2]
  • M r = 460.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1060-efi1.jpg
  • a = 18.1161 (11) Å
  • b = 7.7533 (5) Å
  • c = 14.0553 (8) Å
  • β = 128.533 (3)°
  • V = 1544.32 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 10.23 mm−1
  • T = 173 K
  • 0.40 × 0.31 × 0.25 mm

Data collection

  • Stoe IPDS 2 diffractometer
  • Absorption correction: multi-scan (MULscanABS embedded in PLATON; Spek, 2009 [triangle]) T min = 0.270, T max = 1.000
  • 8116 measured reflections
  • 1451 independent reflections
  • 1411 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017
  • wR(F 2) = 0.036
  • S = 1.14
  • 1451 reflections
  • 88 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.68 e Å−3
  • Δρmin = −1.97 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810030424/wm2389sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030424/wm2389Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the staff of the X-ray Application Lab, CSEM, Neuchâtel, for access to the X-ray diffractometer.

supplementary crystallographic information

Comment

The structural characterization of mercury(II) complexes of thioamides is an important aspect of inorganic chemistry because such complexes can be used as models for metal-sulfur interactions in biological systems (Akrivos, 2001; Bell et al., 2001; Popovic et al., 2000). Several crystallographic reports about mercury(II) complexes of the type, L2HgX2 (L = thiourea or its derivatives) reveal that these complexes usually consist of discrete monomeric molecules with tetrahedral (somewhat distorted) coordination environments around mercury(II) (Ahmad et al., 2009; Bell et al., 2001; Jiang et al., 2001; Lobana et al., 2008; Mufakkar et al., 2010; Nawaz et al., 2010; Popovic et al., 2000; Wu et al., 2004). Recently, we have reported the crystal structures of a number of cyanido complexes of d10 metal ions with L-type ligands, including the crystal structure of a trinuclear complex, [{(tmtu)2Hg(CN)2}2.Hg(CN)2] (tmtu = tetramethylthiourea), which presents a unique example of a Hg(CN)2 bridged mercury(II)-thione complex (Ahmad et al., 2009; Altaf et al., 2010; Fettouhi et al. 2010; Hanif et al., 2007). Herein, we report on the crystal structure of the title mercury cyanide complex of N,N'-dimethylthiourea, [Hg(dmtu)2(CN)2].

The title monomeric complex is composed of an Hg(CN)2 unit with two N,N'-dimethylthiourea (dmtu) ligands coordinated to the Hg atom via the S atom (Fig. 1). The four-coordinate mercury atom is located on a two-fold rotation axis and adopts a severely distorted tetrahedral geometry, the bond angles being in the range of 94.31 (3) - 148.83 (13)°. The molecular structure is stabilized by intramolecular N-H···S interactions involving dmtu units related by the two-fold symmetry (Fig. 1, Table 1). The bond distances and bond angles are in agreement with those reported for related compounds (Ahmad et al., 2009; Altaf et al., 2010; Jiang et al., 2001; Lobana et al., 2008; Mufakkar et al., 2010; Nawaz et al., 2010; Popovic et al., 2000; Wu et al., 2004). The SCN2 moiety of dmtu is planar [to within 0.002 (1) Å] with the C—N and C—S bond lengths corresponding to the values intermediate between single and double bonds. The Hg-C[equivalent]N unit is nearly linear with a bond angle of 175.3 (3)°. The compound is closely related with [Hg(N,N'-dibutylthiourea)2(CN)2] (Ahmad et al., 2009).

In the crystal packing of the title complex, symmetry-related molecules are connected via intermolecular N—H···N hydrogen bonds, involving the thiourea NH atoms and the N atom of the CN- anions (Fig. 2, Table 1). This gives rise to the formation of a two-dimensional network in (110). This is the same arrangement as observed previously for the dibutylthiourea compound mentioned above.

Experimental

To 0.25 g (1.0 mmol) mercury(II) cyanide in 10 ml methanol was added 2 equivalents of N,N'-dimethylthiourea in methanol. On mixing, a clear solution was obtained. It was then stirred for 30 minutes after which it was filtered and the filtrate kept at RT for crystallization by slow evaporation of the solvent. As a result, colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained.

Refinement

The NH H-atoms were located in difference electron-density maps and were freely refined: N—H = 0.80 (6) & 0.79 (5) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(parent C-atom).

Figures

Fig. 1.
The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···S interactions are shown as double dashed lines (see ...
Fig. 2.
A crystal packing diagram of the title complex showing the N—H···S and N—H···N hydrogen bonding interactions (dashed lines; see Table 1 for details).

Crystal data

[Hg(CN)2(C3H8N2S)2]F(000) = 872
Mr = 460.98Dx = 1.983 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 12331 reflections
a = 18.1161 (11) Åθ = 1.9–26.1°
b = 7.7533 (5) ŵ = 10.23 mm1
c = 14.0553 (8) ÅT = 173 K
β = 128.533 (3)°Block, colourless
V = 1544.32 (16) Å30.40 × 0.31 × 0.25 mm
Z = 4

Data collection

Stoe IPDS 2 diffractometer1451 independent reflections
Radiation source: fine-focus sealed tube1411 reflections with I > 2σ(I)
graphiteRint = 0.049
[var phi]– + ω– scansθmax = 25.6°, θmin = 2.9°
Absorption correction: multi-scan (MULscanABS embedded in PLATON; Spek, 2009)h = −21→21
Tmin = 0.270, Tmax = 1.000k = −9→9
8116 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.036H atoms treated by a mixture of independent and constrained refinement
S = 1.14w = 1/[σ2(Fo2) + (0.0129P)2 + 2.6833P] where P = (Fo2 + 2Fc2)/3
1451 reflections(Δ/σ)max < 0.001
88 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −1.97 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.50000−0.21587 (2)0.250000.0231 (1)
S10.37952 (6)0.02195 (11)0.08082 (7)0.0255 (3)
N10.3941 (2)0.1650 (4)0.2640 (3)0.0277 (9)
N20.2450 (2)0.0856 (4)0.1004 (2)0.0241 (8)
N30.3776 (3)−0.3173 (4)0.3370 (3)0.0441 (12)
C10.3355 (2)0.0948 (4)0.1535 (3)0.0210 (9)
C20.3657 (3)0.2174 (5)0.3367 (3)0.0386 (13)
C30.1748 (2)0.0052 (5)−0.0168 (3)0.0306 (11)
C40.4229 (3)−0.2883 (4)0.3084 (3)0.0295 (10)
H1N0.449 (3)0.161 (5)0.296 (3)0.024 (10)*
H2A0.319700.311500.295400.0580*
H2B0.421200.256900.416800.0580*
H2C0.337100.119100.346800.0580*
H2N0.227 (3)0.128 (5)0.134 (3)0.030 (10)*
H3A0.178700.05510−0.077700.0460*
H3B0.111800.02530−0.041100.0460*
H3C0.18680−0.11920−0.010600.0460*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.0209 (1)0.0274 (1)0.0294 (1)0.00000.0197 (1)0.0000
S10.0249 (5)0.0344 (4)0.0242 (4)0.0067 (3)0.0188 (4)0.0020 (3)
N10.0244 (18)0.0359 (17)0.0275 (13)0.0008 (14)0.0185 (14)−0.0045 (12)
N20.0225 (16)0.0279 (15)0.0273 (13)0.0015 (11)0.0181 (12)−0.0035 (11)
N30.040 (2)0.058 (2)0.054 (2)−0.0070 (17)0.0389 (19)0.0028 (16)
C10.0236 (18)0.0192 (15)0.0255 (14)0.0042 (12)0.0179 (14)0.0031 (11)
C20.041 (3)0.050 (2)0.0352 (18)−0.0019 (18)0.0288 (19)−0.0128 (16)
C30.022 (2)0.0341 (19)0.0336 (16)−0.0025 (15)0.0163 (16)−0.0047 (14)
C40.028 (2)0.0288 (17)0.0344 (16)−0.0018 (15)0.0207 (16)0.0009 (14)

Geometric parameters (Å, °)

Hg1—S12.7114 (9)N3—C41.139 (8)
Hg1—C42.090 (6)N1—H1N0.80 (6)
Hg1—S1i2.7114 (9)N2—H2N0.79 (5)
Hg1—C4i2.090 (6)C2—H2A0.9800
S1—C11.736 (4)C2—H2B0.9800
N1—C11.335 (5)C2—H2C0.9800
N1—C21.459 (7)C3—H3A0.9800
N2—C11.314 (6)C3—H3B0.9800
N2—C31.452 (4)C3—H3C0.9800
S1—Hg1—C499.05 (11)S1—C1—N1119.6 (3)
S1—Hg1—S1i94.31 (3)Hg1—C4—N3175.3 (3)
S1—Hg1—C4i102.01 (9)N1—C2—H2A109.00
S1i—Hg1—C4102.01 (9)N1—C2—H2B110.00
C4—Hg1—C4i148.83 (13)N1—C2—H2C109.00
S1i—Hg1—C4i99.05 (11)H2A—C2—H2B109.00
Hg1—S1—C196.84 (11)H2A—C2—H2C109.00
C1—N1—C2123.8 (4)H2B—C2—H2C109.00
C1—N2—C3124.7 (3)N2—C3—H3A109.00
C1—N1—H1N117 (3)N2—C3—H3B110.00
C2—N1—H1N118 (3)N2—C3—H3C109.00
C3—N2—H2N117 (3)H3A—C3—H3B110.00
C1—N2—H2N118 (3)H3A—C3—H3C109.00
S1—C1—N2121.1 (3)H3B—C3—H3C109.00
N1—C1—N2119.3 (4)
C4—Hg1—S1—C132.52 (15)C2—N1—C1—S1−174.9 (3)
S1i—Hg1—S1—C1−70.39 (13)C2—N1—C1—N26.6 (5)
C4i—Hg1—S1—C1−170.60 (16)C3—N2—C1—S14.6 (5)
Hg1—S1—C1—N160.6 (3)C3—N2—C1—N1−177.0 (3)
Hg1—S1—C1—N2−121.0 (3)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.80 (6)2.67 (5)3.415 (4)157 (4)
N2—H2N···N3ii0.79 (5)2.21 (6)2.951 (7)155 (4)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2389).

References

  • Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. & Khan, I. U. (2009). Acta Cryst. E65, m1191–m1192. [PMC free article] [PubMed]
  • Akrivos, P. D. (2001). Coord. Chem. Rev.213, 181–210.
  • Altaf, M., Stoeckli-Evans, H., Ahmad, S., Isab, A. A., Al-Arfaj, A. R., Malik, M. R. & S. Ali, (2010). J. Chem. Crystallogr.40 In the press.
  • Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130–136.
  • Fettouhi, M., Riaz Malik, M., Ali, S. A., Isab, A. & Ahmad, S. (2010). Acta Cryst. E66, m997. [PMC free article] [PubMed]
  • Hanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.
  • Jiang, X. N., Xu, D., Yuan, D. R. & Yu, W. T. (2001). Chin. Chem. Lett.12, 279–282.
  • Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. & Butcher, R. J. (2008). Z. Anorg. Allg. Chem.634, 718–723.
  • Mufakkar, M., Tahir, M. N., Sadaf, H., Ahmad, S. & Waheed, A. (2010). Acta Cryst. E66, m1001–m1002. [PMC free article] [PubMed]
  • Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952. [PMC free article] [PubMed]
  • Popovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., M. Rajic, M. Vikic-Topic, D., Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142–152.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2009). X-AREA and X-RED32 Stoe & Cie GmbH, Darmstadt, Germany.
  • Wu, Z.-Y., Xu, D.-J. & Hung, C.-H. (2004). J. Coord. Chem.57, 791–796.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography