PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2291.
Published online 2010 August 11. doi:  10.1107/S1600536810031181
PMCID: PMC3008113

2-Methyl­benzimidazolium thio­cyanate–2-methyl­benzimidazole (1/1)

Abstract

In the crystal structure of the title compound, C8H9N2 +·SCN·C8H8N2, the three components are linked by inter­molecular N—H(...)N and N—H(...)S hydrogen bonds into infinite chains along the c axis.

Related literature

For related structures, see: Bhattacharya et al. (2004 [triangle]); Ding et al. (2004 [triangle]); Huang et al. (2006 [triangle]). For applications of benzimidazole derivatives in crystal engineering, see: Cai et al. (2002 [triangle]). For the biological properties of benzimidazole derivatives, see: Refaat (2010 [triangle]); Ansari & Lal (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2291-scheme1.jpg

Experimental

Crystal data

  • C8H9N2 +·SCN·C8H8N2
  • M r = 323.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2291-efi4.jpg
  • a = 11.0952 (7) Å
  • b = 6.9664 (4) Å
  • c = 21.4195 (13) Å
  • β = 100.745 (1)°
  • V = 1626.56 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 100 K
  • 0.25 × 0.25 × 0.06 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.950, T max = 0.988
  • 8812 measured reflections
  • 3193 independent reflections
  • 2427 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.093
  • S = 1.03
  • 3193 reflections
  • 222 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031181/pv2314sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031181/pv2314Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Malaya for funding this study (FRGS grant FP009/2008 C).

supplementary crystallographic information

Comment

Benzimidazole derivatives are biologically active compounds (Refaat, 2010; Ansari & Lal, 2009). Their applications in crystal-engineering have been reported (Cai et al., 2002). The crystal structures of several compounds similar to the title compound have been publsihed (Bhattacharya et al., 2004; Ding et al., 2004; Huang et al., 2006. In this article, the preparation and crystal structure of the title compound is presented.

The asymmetric unit of the title compound contains a 2-methylbenzimidazolium cation, a thiocyante anion and a molecule of 2-methylbenzimidazole (Fig. 1). In the crystal structure, the three moieties are linked by intramolecular N—H···N and N—H···S hydrogen bondings into infinite one-dimensional chains (Tab. 1 & Fig. 2).

Experimental

An ethanolic solution (12 ml) of 2-methylbenzimidazole (9 mmol, 1.2 g) was added to an aqueous solution (10 ml) of FeCl3 (3 mmol) followed by addition of an aqueous solution (10 ml) of KSCN (9 mmol). The mixture was heated in a water bath for 15 min. The resulting precipitates were filtered off, washed with ethanol (50%) and recrystallized from ethanol whereupon the pale yellow crystals of the title compound were obtained unexpectedly.

Refinement

The C-bound hydrogen atoms were placed at calculated positions (C—H 0.95 - 0.98 Å) and were treated as riding on their parent atoms with Uiso(H) set to 1.2–1.5 Ueq(C). The N-bound hydrogen atoms were located in a difference Fourier map and were refined with a distance restraint of N—H 0.88 (2) Å.

Figures

Fig. 1.
Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
A view of the hydrogen bonding interactions as viewed down b. Symmetry code: i = x + 1/2, -y + 1/2, z - 1/2.

Crystal data

C8H9N2+·SCN·C8H8N2F(000) = 680
Mr = 323.42Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1739 reflections
a = 11.0952 (7) Åθ = 2.3–25.1°
b = 6.9664 (4) ŵ = 0.21 mm1
c = 21.4195 (13) ÅT = 100 K
β = 100.745 (1)°Plate, yellow
V = 1626.56 (17) Å30.25 × 0.25 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3193 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.950, Tmax = 0.988k = −7→8
8812 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.035P)2 + 0.6349P] where P = (Fo2 + 2Fc2)/3
3193 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.20 e Å3
3 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.76009 (14)0.1676 (2)0.43464 (7)0.0183 (4)
H1N0.7853 (18)0.196 (3)0.4761 (8)0.033 (6)*
N20.76652 (13)0.1089 (2)0.33548 (7)0.0169 (3)
H2N0.7976 (19)0.090 (3)0.2999 (8)0.038 (7)*
C10.96598 (16)0.1988 (3)0.40543 (9)0.0233 (4)
H1A1.01050.07840.41650.035*
H1B0.98510.28890.44100.035*
H1C0.99080.25460.36780.035*
C20.83267 (16)0.1602 (3)0.39179 (8)0.0174 (4)
C30.64561 (16)0.0800 (3)0.34260 (9)0.0170 (4)
C40.54091 (16)0.0242 (3)0.29996 (9)0.0198 (4)
H40.5429−0.00240.25670.024*
C50.43398 (17)0.0096 (3)0.32393 (10)0.0244 (5)
H50.3608−0.02900.29630.029*
C60.43008 (17)0.0498 (3)0.38747 (10)0.0262 (5)
H60.35450.03810.40190.031*
C70.53387 (17)0.1064 (3)0.42968 (10)0.0227 (4)
H70.53170.13520.47280.027*
C80.64148 (16)0.1190 (3)0.40569 (9)0.0173 (4)
N30.49936 (14)0.4693 (2)0.66246 (7)0.0179 (3)
H3N0.5709 (14)0.483 (3)0.6527 (9)0.022 (5)*
N40.36143 (13)0.4455 (2)0.72545 (7)0.0175 (3)
C90.57509 (16)0.5348 (3)0.77709 (9)0.0236 (4)
H9A0.53770.58430.81190.035*
H9B0.62830.63340.76400.035*
H9C0.62390.42050.79150.035*
C100.47689 (16)0.4834 (3)0.72223 (9)0.0174 (4)
C110.39134 (16)0.4178 (3)0.62290 (9)0.0173 (4)
C120.36142 (17)0.3839 (3)0.55802 (9)0.0212 (4)
H120.42090.39440.53150.025*
C130.24092 (18)0.3343 (3)0.53365 (9)0.0235 (4)
H130.21710.30920.48950.028*
C140.15347 (18)0.3204 (3)0.57299 (9)0.0239 (4)
H140.07150.28650.55490.029*
C150.18384 (16)0.3548 (3)0.63752 (9)0.0204 (4)
H150.12400.34550.66380.024*
C160.30494 (16)0.4037 (3)0.66294 (8)0.0167 (4)
S10.79070 (4)0.52630 (8)0.64995 (2)0.02656 (15)
N50.83250 (16)0.2375 (3)0.56491 (8)0.0283 (4)
C170.81466 (16)0.3567 (3)0.60007 (9)0.0208 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0217 (8)0.0189 (9)0.0143 (8)0.0006 (7)0.0030 (6)−0.0004 (7)
N20.0162 (8)0.0193 (9)0.0156 (8)0.0004 (6)0.0041 (6)−0.0006 (7)
C10.0184 (10)0.0266 (12)0.0237 (10)0.0000 (8)0.0006 (8)−0.0034 (9)
C20.0200 (9)0.0152 (10)0.0169 (9)0.0024 (7)0.0029 (7)0.0009 (8)
C30.0186 (9)0.0132 (10)0.0198 (10)0.0019 (7)0.0051 (7)0.0022 (8)
C40.0197 (9)0.0175 (10)0.0210 (10)0.0005 (8)0.0008 (7)0.0007 (9)
C50.0181 (9)0.0196 (11)0.0343 (12)−0.0004 (8)0.0016 (8)0.0046 (9)
C60.0213 (10)0.0226 (11)0.0380 (12)0.0022 (8)0.0145 (9)0.0068 (10)
C70.0283 (11)0.0180 (11)0.0248 (10)0.0030 (8)0.0125 (8)0.0040 (9)
C80.0197 (9)0.0115 (10)0.0207 (10)0.0015 (7)0.0043 (7)0.0028 (8)
N30.0143 (8)0.0202 (9)0.0205 (8)0.0002 (7)0.0063 (6)0.0005 (7)
N40.0178 (8)0.0181 (9)0.0165 (8)−0.0002 (6)0.0031 (6)0.0013 (7)
C90.0197 (10)0.0262 (11)0.0242 (10)−0.0011 (8)0.0021 (8)−0.0001 (9)
C100.0180 (9)0.0149 (10)0.0193 (9)0.0001 (7)0.0032 (7)−0.0002 (8)
C110.0192 (9)0.0131 (10)0.0193 (9)0.0011 (7)0.0027 (7)0.0009 (8)
C120.0291 (10)0.0159 (10)0.0201 (10)0.0016 (8)0.0083 (8)0.0022 (8)
C130.0328 (11)0.0177 (11)0.0177 (10)−0.0005 (9)−0.0011 (8)0.0000 (9)
C140.0230 (10)0.0202 (11)0.0258 (11)−0.0027 (8)−0.0018 (8)0.0027 (9)
C150.0182 (9)0.0188 (11)0.0240 (10)−0.0017 (8)0.0032 (8)0.0029 (9)
C160.0213 (9)0.0126 (9)0.0159 (9)0.0023 (7)0.0025 (7)0.0027 (8)
S10.0226 (3)0.0293 (3)0.0296 (3)−0.0040 (2)0.0095 (2)−0.0066 (2)
N50.0336 (10)0.0324 (11)0.0184 (9)0.0026 (8)0.0033 (7)−0.0006 (8)
C170.0166 (9)0.0285 (12)0.0165 (9)−0.0007 (8)0.0010 (7)0.0060 (9)

Geometric parameters (Å, °)

N1—C21.330 (2)N3—C111.380 (2)
N1—C81.388 (2)N3—H3N0.862 (15)
N1—H1N0.901 (15)N4—C101.322 (2)
N2—C21.338 (2)N4—C161.399 (2)
N2—C31.393 (2)C9—C101.489 (2)
N2—H2N0.902 (15)C9—H9A0.9800
C1—C21.478 (2)C9—H9B0.9800
C1—H1A0.9800C9—H9C0.9800
C1—H1B0.9800C11—C121.387 (3)
C1—H1C0.9800C11—C161.404 (3)
C3—C81.387 (2)C12—C131.385 (3)
C3—C41.392 (2)C12—H120.9500
C4—C51.381 (3)C13—C141.402 (3)
C4—H40.9500C13—H130.9500
C5—C61.398 (3)C14—C151.381 (3)
C5—H50.9500C14—H140.9500
C6—C71.382 (3)C15—C161.395 (2)
C6—H60.9500C15—H150.9500
C7—C81.388 (3)S1—C171.647 (2)
C7—H70.9500N5—C171.163 (2)
N3—C101.353 (2)
C2—N1—C8109.14 (15)C10—N3—C11107.93 (15)
C2—N1—H1N124.9 (13)C10—N3—H3N124.1 (13)
C8—N1—H1N125.9 (13)C11—N3—H3N127.8 (13)
C2—N2—C3108.51 (15)C10—N4—C16104.90 (15)
C2—N2—H2N124.6 (14)C10—C9—H9A109.5
C3—N2—H2N126.8 (14)C10—C9—H9B109.5
C2—C1—H1A109.5H9A—C9—H9B109.5
C2—C1—H1B109.5C10—C9—H9C109.5
H1A—C1—H1B109.5H9A—C9—H9C109.5
C2—C1—H1C109.5H9B—C9—H9C109.5
H1A—C1—H1C109.5N4—C10—N3112.71 (15)
H1B—C1—H1C109.5N4—C10—C9125.46 (17)
N1—C2—N2109.35 (15)N3—C10—C9121.82 (16)
N1—C2—C1124.67 (16)N3—C11—C12132.64 (17)
N2—C2—C1125.96 (17)N3—C11—C16104.88 (16)
C8—C3—C4121.23 (17)C12—C11—C16122.48 (17)
C8—C3—N2106.61 (15)C13—C12—C11116.98 (17)
C4—C3—N2132.17 (17)C13—C12—H12121.5
C5—C4—C3116.49 (18)C11—C12—H12121.5
C5—C4—H4121.8C12—C13—C14121.20 (18)
C3—C4—H4121.8C12—C13—H13119.4
C4—C5—C6122.11 (18)C14—C13—H13119.4
C4—C5—H5118.9C15—C14—C13121.49 (18)
C6—C5—H5118.9C15—C14—H14119.3
C7—C6—C5121.38 (18)C13—C14—H14119.3
C7—C6—H6119.3C14—C15—C16118.08 (17)
C5—C6—H6119.3C14—C15—H15121.0
C6—C7—C8116.43 (18)C16—C15—H15121.0
C6—C7—H7121.8C15—C16—N4130.66 (17)
C8—C7—H7121.8C15—C16—C11119.76 (17)
C3—C8—C7122.36 (17)N4—C16—C11109.58 (15)
C3—C8—N1106.39 (15)N5—C17—S1179.47 (18)
C7—C8—N1131.25 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···N50.90 (2)1.90 (2)2.799 (2)176 (2)
N2—H2N···N4i0.90 (2)1.88 (2)2.781 (2)179 (2)
N3—H3N···S10.86 (2)2.47 (2)3.317 (2)168 (2)

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2314).

References

  • Ansari, K. F. & Lal, C. (2009). J. Chem. Sci.121, 1017–1025.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bhattacharya, R., Chanda, S., Bocelli, G., Cantoni, A. & Ghosh, A. (2004). J. Chem. Crystallogr.34, 393–400.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cai, C.-X., Tian, Y.-Q., Li, Y.-Z. & You, X.-Z. (2002). Acta Cryst. C58, m459–m460. [PubMed]
  • Ding, C.-F., Zhang, S.-S., Li, X.-M., Xu, H. & Ouyang, P.-K. (2004). Acta Cryst. E60, o2441–o2443.
  • Huang, X., Liu, J.-G. & Xu, D.-J. (2006). Acta Cryst. E62, o1833–o1835.
  • Refaat, H. M. (2010). Eur. J. Med. Chem.45, 2949–2956. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography