PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2331.
Published online 2010 August 18. doi:  10.1107/S160053681003196X
PMCID: PMC3008110

(Diphenyl­phosphor­yl)(2-nitro­phen­yl)methanol

Abstract

In the title compound, C19H16NO4P, the dihedral angle between the mean planes of the phenyl rings bonded to the P atom is 75.4 (1)°. In the crystal, mol­ecules are linked into chains running along the a axis by inter­molecular O—H(...)O hydrogen bonds. Mol­ecules are further connected into a three-dimensional array by weak C—H(...)O hydrogen bonds.

Related literature

For applications of the analogous compound (diphenyl­phosphino­yl)phenyl­methanol in the rhodium-catalysed hydro­formyl­ation of alkenes, see: Clark et al. (2002 [triangle]). For related structures, see: Liu et al. (2007 [triangle]); Liu & Huo (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2331-scheme1.jpg

Experimental

Crystal data

  • C19H16NO4P
  • M r = 353.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2331-efi1.jpg
  • a = 5.9179 (12) Å
  • b = 13.917 (3) Å
  • c = 20.405 (4) Å
  • V = 1680.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 293 K
  • 0.35 × 0.22 × 0.13 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.533, T max = 1.000
  • 14520 measured reflections
  • 3311 independent reflections
  • 3065 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.078
  • S = 1.05
  • 3311 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1377 Friedel pairs
  • Flack parameter: 0.19 (7)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003196X/pb2037sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003196X/pb2037Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Technical Project of the Department of Education of Jiangxi Province of China (Nos. GJJ08528 and GJJ09638) for supporting this work. We also thank the Hunan Provincial University Key Laboratory of QSAR/QSPR for providing technical assistance.

supplementary crystallographic information

Comment

The title compound, (I), is an analog of (diphenylphosphinoyl)phenylmethanol, which was employed as a ligand in the rhodium-catalyzed hydroformylation of alkenes, with good conversions and regioselectivities (Clark et al., 2002).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are in agreement with those reported for similar compounds (Liu et al., 2007; Liu et al., 2008). The dihedral angle between the mean-planes of the phenyl rings (C8—C13) and (C14—C19) bonded to P-atoms is 53.0 (1)°. The strong O—H···O and weak C—H···O intermolecular hydrogen bonds play a significant role in stabilizing the crystal structure; see Table 1 for geometric parameters and symmetry operations. A strong O—H···O hydrogen bond involving the hydroxyl group link the molecules into a chain running along the a axis. Molecules are further connected into a three-dimensional array by non-classical and rather weak C—H···O intermolecular hydrogen-bonding interactions.

Experimental

To a solution of 2-nitrobenzaldehyde (0.30 g, 2.0 mmol) and diphenylphosphine oxide (0.40 g, 2.0 mmol) in tetrahydrofuran (10 ml) at 273 K was added dropwise triethylamine (0.03 ml, 2 mmol). The cooling bath was removed and the mixture warmed to ambient temperature for 2 h. The solvent was concentrated under vacuum and the crude product was purified by recrystallization in methanol to give the title compound as a white solid in 82% yield. Single crystals of (I) were obtained by slow evaporation of a methanol solution.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.98 Å (methine), O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(c) and 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
Fig. 2.
Part of the packing of the title compound. Intermolecular hydrogen bonds are represented by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C19H16NO4PF(000) = 736
Mr = 353.30Dx = 1.396 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2260 reflections
a = 5.9179 (12) Åθ = 3.3–27.5°
b = 13.917 (3) ŵ = 0.19 mm1
c = 20.405 (4) ÅT = 293 K
V = 1680.6 (6) Å3Plate, colorless
Z = 40.35 × 0.22 × 0.13 mm

Data collection

Bruker APEX area-detector diffractometer3311 independent reflections
Radiation source: fine-focus sealed tube3065 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→7
Tmin = 0.533, Tmax = 1.000k = −16→17
14520 measured reflectionsl = −25→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.078w = 1/[σ2(Fo2) + (0.0524P)2 + 0.0539P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3311 reflectionsΔρmax = 0.18 e Å3
226 parametersΔρmin = −0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1373 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: please supply

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P10.36544 (6)0.05040 (3)0.12304 (2)0.02988 (11)
O10.13285 (17)0.06076 (8)0.15090 (6)0.0399 (3)
O20.75302 (16)−0.03926 (10)0.14345 (6)0.0448 (3)
H2A0.8541−0.00080.15170.067*
O30.3080 (3)0.04117 (11)0.29316 (8)0.0683 (4)
O4−0.0305 (2)−0.01286 (11)0.29317 (8)0.0624 (4)
C10.5574 (2)−0.01474 (11)0.17954 (8)0.0323 (3)
H1A0.59670.02570.21720.039*
C20.4346 (3)−0.10461 (11)0.20185 (8)0.0328 (3)
C30.4930 (3)−0.19195 (13)0.17376 (10)0.0461 (4)
H3A0.6165−0.19480.14560.055*
C40.3715 (4)−0.27538 (13)0.18661 (12)0.0604 (6)
H4A0.4172−0.33320.16800.072*
C50.1858 (4)−0.27310 (14)0.22626 (12)0.0622 (6)
H5A0.1040−0.32900.23410.075*
C60.1201 (4)−0.18790 (13)0.25448 (10)0.0524 (5)
H6A−0.0076−0.18560.28100.063*
C70.2453 (3)−0.10560 (12)0.24313 (8)0.0360 (4)
C80.4845 (3)0.16772 (11)0.10671 (8)0.0320 (3)
C90.3434 (3)0.24491 (12)0.12017 (10)0.0455 (4)
H9A0.20100.23370.13790.055*
C100.4114 (4)0.33817 (13)0.10765 (11)0.0552 (5)
H10A0.31580.38920.11770.066*
C110.6187 (4)0.35558 (13)0.08061 (10)0.0512 (5)
H11A0.66290.41830.07130.061*
C120.7628 (3)0.27996 (13)0.06705 (10)0.0472 (5)
H12A0.90370.29210.04870.057*
C130.6988 (3)0.18611 (12)0.08065 (9)0.0408 (4)
H13A0.79790.13570.07250.049*
C140.3674 (3)−0.02135 (11)0.04912 (8)0.0349 (3)
C150.5420 (3)−0.01949 (15)0.00353 (10)0.0496 (5)
H15A0.66430.02140.01000.060*
C160.5353 (4)−0.07759 (16)−0.05106 (11)0.0575 (5)
H16A0.6521−0.0753−0.08150.069*
C170.3564 (4)−0.13884 (15)−0.06060 (11)0.0591 (5)
H17A0.3526−0.1784−0.09730.071*
C180.1833 (4)−0.14165 (17)−0.01602 (12)0.0643 (6)
H18A0.0624−0.1833−0.02250.077*
C190.1878 (3)−0.08300 (14)0.03839 (11)0.0515 (5)
H19A0.0689−0.08490.06820.062*
N10.1687 (3)−0.01963 (11)0.27860 (7)0.0446 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.02187 (17)0.03298 (19)0.0348 (2)−0.00254 (14)0.00264 (15)0.00331 (17)
O10.0241 (5)0.0443 (6)0.0512 (7)−0.0008 (5)0.0076 (5)0.0058 (5)
O20.0226 (5)0.0599 (8)0.0520 (8)−0.0028 (5)0.0049 (5)−0.0046 (6)
O30.0721 (9)0.0642 (9)0.0686 (10)−0.0235 (8)0.0197 (8)−0.0319 (9)
O40.0511 (8)0.0733 (9)0.0628 (10)0.0023 (7)0.0212 (7)−0.0041 (8)
C10.0243 (7)0.0376 (8)0.0349 (8)−0.0013 (6)0.0013 (6)0.0010 (7)
C20.0309 (7)0.0336 (8)0.0338 (8)0.0009 (6)−0.0053 (6)0.0038 (7)
C30.0444 (9)0.0395 (9)0.0545 (11)0.0069 (8)−0.0028 (9)−0.0016 (8)
C40.0753 (14)0.0295 (8)0.0763 (15)0.0073 (10)−0.0113 (13)−0.0023 (9)
C50.0727 (14)0.0372 (10)0.0766 (16)−0.0154 (10)−0.0069 (12)0.0133 (10)
C60.0526 (10)0.0496 (10)0.0549 (12)−0.0129 (9)0.0043 (10)0.0149 (9)
C70.0380 (8)0.0343 (8)0.0355 (9)−0.0040 (7)−0.0001 (7)0.0050 (7)
C80.0307 (7)0.0333 (8)0.0320 (8)−0.0040 (6)0.0008 (6)0.0027 (6)
C90.0440 (8)0.0400 (8)0.0525 (11)0.0002 (7)0.0113 (9)−0.0016 (8)
C100.0632 (12)0.0354 (9)0.0670 (14)0.0054 (8)0.0124 (10)−0.0033 (9)
C110.0618 (11)0.0381 (9)0.0537 (11)−0.0095 (9)0.0003 (10)0.0091 (8)
C120.0411 (9)0.0485 (10)0.0520 (12)−0.0127 (8)0.0048 (8)0.0100 (9)
C130.0319 (8)0.0401 (9)0.0504 (11)−0.0016 (7)0.0052 (7)0.0049 (8)
C140.0337 (7)0.0370 (8)0.0340 (8)−0.0019 (7)−0.0047 (7)0.0027 (7)
C150.0442 (9)0.0607 (11)0.0438 (10)−0.0113 (9)0.0031 (8)−0.0067 (9)
C160.0590 (12)0.0719 (14)0.0416 (11)−0.0029 (10)0.0068 (9)−0.0070 (10)
C170.0732 (13)0.0576 (11)0.0465 (11)−0.0026 (11)−0.0087 (11)−0.0119 (9)
C180.0615 (13)0.0644 (13)0.0670 (15)−0.0209 (11)−0.0051 (11)−0.0163 (11)
C190.0440 (10)0.0567 (11)0.0536 (12)−0.0134 (8)0.0012 (8)−0.0056 (9)
N10.0501 (9)0.0478 (8)0.0359 (8)−0.0031 (7)0.0117 (7)0.0011 (6)

Geometric parameters (Å, °)

P1—O11.4961 (11)C8—C131.398 (2)
P1—C141.8091 (17)C9—C101.383 (2)
P1—C81.8093 (15)C9—H9A0.9300
P1—C11.8550 (16)C10—C111.367 (3)
O2—C11.4140 (18)C10—H10A0.9300
O2—H2A0.8200C11—C121.382 (3)
O3—N11.2180 (19)C11—H11A0.9300
O4—N11.219 (2)C12—C131.388 (2)
C1—C21.516 (2)C12—H12A0.9300
C1—H1A0.9800C13—H13A0.9300
C2—C31.387 (2)C14—C191.384 (2)
C2—C71.402 (2)C14—C151.390 (2)
C3—C41.391 (3)C15—C161.377 (3)
C3—H3A0.9300C15—H15A0.9300
C4—C51.365 (3)C16—C171.373 (3)
C4—H4A0.9300C16—H16A0.9300
C5—C61.374 (3)C17—C181.370 (3)
C5—H5A0.9300C17—H17A0.9300
C6—C71.384 (2)C18—C191.378 (3)
C6—H6A0.9300C18—H18A0.9300
C7—N11.470 (2)C19—H19A0.9300
C8—C91.388 (2)
O1—P1—C14112.08 (7)C10—C9—H9A119.5
O1—P1—C8109.96 (7)C8—C9—H9A119.5
C14—P1—C8109.99 (7)C11—C10—C9120.14 (18)
O1—P1—C1111.99 (7)C11—C10—H10A119.9
C14—P1—C1104.15 (7)C9—C10—H10A119.9
C8—P1—C1108.49 (7)C10—C11—C12119.96 (17)
C1—O2—H2A109.5C10—C11—H11A120.0
O2—C1—C2110.46 (13)C12—C11—H11A120.0
O2—C1—P1107.20 (11)C11—C12—C13120.53 (17)
C2—C1—P1107.24 (10)C11—C12—H12A119.7
O2—C1—H1A110.6C13—C12—H12A119.7
C2—C1—H1A110.6C12—C13—C8119.72 (16)
P1—C1—H1A110.6C12—C13—H13A120.1
C3—C2—C7116.01 (15)C8—C13—H13A120.1
C3—C2—C1118.65 (15)C19—C14—C15118.46 (16)
C7—C2—C1124.84 (14)C19—C14—P1117.98 (14)
C2—C3—C4121.67 (18)C15—C14—P1123.54 (12)
C2—C3—H3A119.2C16—C15—C14120.60 (17)
C4—C3—H3A119.2C16—C15—H15A119.7
C5—C4—C3120.57 (18)C14—C15—H15A119.7
C5—C4—H4A119.7C17—C16—C15120.1 (2)
C3—C4—H4A119.7C17—C16—H16A120.0
C4—C5—C6119.74 (18)C15—C16—H16A120.0
C4—C5—H5A120.1C18—C17—C16120.00 (19)
C6—C5—H5A120.1C18—C17—H17A120.0
C5—C6—C7119.51 (18)C16—C17—H17A120.0
C5—C6—H6A120.2C17—C18—C19120.23 (19)
C7—C6—H6A120.2C17—C18—H18A119.9
C6—C7—C2122.46 (16)C19—C18—H18A119.9
C6—C7—N1115.23 (15)C18—C19—C14120.63 (19)
C2—C7—N1122.30 (14)C18—C19—H19A119.7
C9—C8—C13118.62 (15)C14—C19—H19A119.7
C9—C8—P1115.32 (12)O3—N1—O4122.76 (16)
C13—C8—P1126.04 (13)O3—N1—C7118.48 (14)
C10—C9—C8121.00 (16)O4—N1—C7118.75 (16)
O1—P1—C1—O2167.18 (10)C13—C8—C9—C100.6 (3)
C14—P1—C1—O245.86 (12)P1—C8—C9—C10−177.73 (17)
C8—P1—C1—O2−71.28 (12)C8—C9—C10—C111.1 (3)
O1—P1—C1—C248.55 (13)C9—C10—C11—C12−1.4 (3)
C14—P1—C1—C2−72.77 (12)C10—C11—C12—C130.0 (3)
C8—P1—C1—C2170.09 (11)C11—C12—C13—C81.7 (3)
O2—C1—C2—C3−14.0 (2)C9—C8—C13—C12−1.9 (3)
P1—C1—C2—C3102.53 (15)P1—C8—C13—C12176.16 (14)
O2—C1—C2—C7174.47 (14)O1—P1—C14—C19−21.10 (16)
P1—C1—C2—C7−69.03 (19)C8—P1—C14—C19−143.75 (14)
C7—C2—C3—C4−0.7 (3)C1—P1—C14—C19100.16 (15)
C1—C2—C3—C4−172.97 (17)O1—P1—C14—C15160.53 (15)
C2—C3—C4—C51.8 (3)C8—P1—C14—C1537.87 (17)
C3—C4—C5—C6−0.9 (3)C1—P1—C14—C15−78.22 (16)
C4—C5—C6—C7−1.0 (3)C19—C14—C15—C160.2 (3)
C5—C6—C7—C22.2 (3)P1—C14—C15—C16178.53 (16)
C5—C6—C7—N1−176.57 (18)C14—C15—C16—C17−0.7 (3)
C3—C2—C7—C6−1.3 (3)C15—C16—C17—C180.5 (4)
C1—C2—C7—C6170.47 (17)C16—C17—C18—C190.1 (4)
C3—C2—C7—N1177.34 (16)C17—C18—C19—C14−0.7 (3)
C1—C2—C7—N1−10.9 (3)C15—C14—C19—C180.5 (3)
O1—P1—C8—C9−1.93 (16)P1—C14—C19—C18−177.97 (17)
C14—P1—C8—C9121.97 (14)C6—C7—N1—O3150.69 (18)
C1—P1—C8—C9−124.70 (14)C2—C7—N1—O3−28.0 (2)
O1—P1—C8—C13179.93 (14)C6—C7—N1—O4−28.1 (2)
C14—P1—C8—C13−56.18 (17)C2—C7—N1—O4153.19 (17)
C1—P1—C8—C1357.15 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.862.6483 (16)161.
C4—H4A···O3ii0.932.523.207 (2)131.
C19—H19A···O2iii0.932.503.404 (2)164.

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2037).

References

  • Bruker (2001). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clark, H. J., Wang, R. & Alper, H. (2002). J. Org. Chem.67, 6224–6225. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Liu, W.-Y. & Huo, P. (2008). Acta Cryst. E64, o233. [PMC free article] [PubMed]
  • Liu, W.-Y., Huo, P., Gao, Y.-X., Liu, P. & Zhao, Y.-F. (2007). Acta Cryst. E63, o1008–o1009.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography