PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2192–o2193.
Published online 2010 August 4. doi:  10.1107/S160053681003000X
PMCID: PMC3008103

2-Amino-5-methyl­pyridinium 2-carb­oxy­benzoate

Abstract

In the title salt, C6H9N2 +·C8H5O4 , the hydrogen phthalate anion is essentially planar, with a maximum deviation of 0.011 (2) Å. In the crystal structure, the protonated N atom of the pyridine ring and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H(...)O hydrogen bonds, forming an R 2 2(8) ring motif. In the hydrogen phthalate anion, there is a very strong, almost symmetric, intra­molecular O—H(...)O hydrogen bond, generating an S(7) motif [O(...)O = 2.382 (3) Å]. Furthermore, these two molecular motif rings are connected by a bifurcated N—H(...)(O,O) hydrogen-bonded motif R 1 2(4), forming a supra­molecular ribbon along the b axis. The crystal structure is further stabilized by π–π inter­actions between the cations and anions [centroid–centroid distance = 3.6999 (10) Å].

Related literature

For the crystal structure of phthalic acid, see: Nowacki & Jaggi (1957 [triangle]); Küppers (1981 [triangle]); Ermer (1981 [triangle]). For the crystal structures of hydrogen phthalates, see: Jessen (1990 [triangle]); Jin et al. (2003 [triangle]); Küppers (1978 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For reference bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2192-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C8H5O4
  • M r = 274.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2192-efi1.jpg
  • a = 11.3853 (2) Å
  • b = 8.8203 (2) Å
  • c = 13.4617 (3) Å
  • β = 101.540 (2)°
  • V = 1324.52 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.47 × 0.33 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.953, T max = 0.980
  • 12332 measured reflections
  • 3049 independent reflections
  • 2054 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.136
  • S = 1.03
  • 3049 reflections
  • 197 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003000X/wn2402sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003000X/wn2402Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

The crystal structure of phthalic acid (Nowacki & Jaggi, 1957; Küppers, 1981; Ermer, 1981) has been reported several times. Analysis of the structures archived in the Cambridge Structural Database (Version 5.28; Allen, 2002) shows that the hydrogen phthalate ions of phthalate salts occur in two different forms: (i) non-planar, where both the carboxyl (COOH) and the carboxylate (COO-) groups are twisted out of the plane of the benzene ring (Jessen, 1990; Jin et al., 2003), and (ii) planar, in which both the COOH and the COO- groups are coplanar with the benzene plane (Küppers, 1978). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound (Fig 1), contains a protonated 2-amino-5-methylpyridinium cation and a hydrogen phthalate anion. In the 2-amino-5-methylpyridinium cation, a wide angle (122.45 (16)°) is subtended at the protonated N1 atom. The hydrogen phthalate anion is almost planar, with a maximum deviation of 0.011 (2) Å for atom C5. The bond lengths are normal (Allen et al., 1987).

In the crystal structure (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O (Table 1) hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). In the hydrogen phthalate anion, there is a very strong intramolecular O—H···O hydrogen bond, generating an S(7) motif [O1···O3 = 2.382 (3) Å]. Furthermore, these two molecular motif rings are connected by a bifurcated hydrogen bonded motif R21(4), involving H1N2 of the 2-amino group and carboxyl atoms O3 and O4 to form a supramolecular ribbon along the b-axis. The crystal structure is further stabilized by π–π interactions between the cations and anions [centroid-centroid distance = 3.6999 (10) Å ; symmetry code: -1/2+x, 1/2-y, 1/2+z].

Experimental

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (27 mg, Aldrich) and phthalic acid (41 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

Atoms H1N1, H2N2, H1N2 and H1O1 were located from a difference Fourier map and were refined freely [N—H= 0.90 (3) – 0.95 (2) Å and O—H = 1.16 (3) – 1.22 (3) Å]. The remaining hydrogen atoms were positioned geometrically [C—H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was used for the methyl group.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. A solid line indicates the intramolecular hydrogen bond.
Fig. 2.
A view, down the a-axis, of supramolecular ribbons made up of cations and anions. The dashed lines indicate hydrogen bonds.

Crystal data

C6H9N2+·C8H5O4F(000) = 576
Mr = 274.27Dx = 1.375 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3124 reflections
a = 11.3853 (2) Åθ = 2.6–28.6°
b = 8.8203 (2) ŵ = 0.10 mm1
c = 13.4617 (3) ÅT = 296 K
β = 101.540 (2)°Block, colourless
V = 1324.52 (5) Å30.47 × 0.33 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3049 independent reflections
Radiation source: fine-focus sealed tube2054 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −14→14
Tmin = 0.953, Tmax = 0.980k = −11→11
12332 measured reflectionsl = −17→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0585P)2 + 0.230P] where P = (Fo2 + 2Fc2)/3
3049 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.22365 (18)−0.0844 (2)0.56803 (13)0.1122 (6)
O20.11271 (15)−0.09799 (18)0.41687 (11)0.0907 (5)
O30.39091 (17)0.0516 (2)0.66089 (11)0.1042 (6)
O40.51382 (17)0.2270 (2)0.63733 (13)0.1129 (6)
C10.24378 (17)0.09471 (19)0.33146 (12)0.0560 (4)
H1A0.17620.04560.29560.067*
C20.30478 (17)0.1928 (2)0.28048 (13)0.0609 (5)
H2A0.27770.21070.21160.073*
C30.40493 (17)0.2635 (2)0.33145 (15)0.0689 (5)
H3A0.44810.32770.29730.083*
C40.44221 (17)0.2395 (2)0.43406 (16)0.0675 (5)
H4A0.51040.28940.46820.081*
C50.38123 (16)0.14284 (19)0.48854 (12)0.0547 (4)
C60.27973 (15)0.06614 (17)0.43513 (12)0.0508 (4)
C70.4338 (2)0.1418 (3)0.60205 (16)0.0719 (6)
C80.1997 (2)−0.0461 (2)0.47582 (15)0.0644 (5)
N10.55034 (14)0.21351 (16)0.02651 (10)0.0539 (4)
N20.46340 (18)0.2514 (2)−0.14144 (14)0.0712 (5)
C90.54553 (16)0.18327 (18)−0.07217 (12)0.0532 (4)
C100.62974 (17)0.0798 (2)−0.09620 (14)0.0611 (5)
H10A0.62900.0552−0.16350.073*
C110.71156 (17)0.0164 (2)−0.02130 (14)0.0619 (5)
H11A0.7671−0.0511−0.03830.074*
C120.71554 (16)0.04912 (19)0.08173 (13)0.0573 (4)
C130.63244 (16)0.14845 (19)0.10155 (13)0.0581 (4)
H13A0.63160.17290.16860.070*
C140.80669 (19)−0.0225 (3)0.16415 (16)0.0798 (6)
H14A0.79530.01330.22890.120*
H14B0.88580.00390.15530.120*
H14C0.7975−0.13070.16110.120*
H1N10.4931 (17)0.279 (2)0.0425 (14)0.067 (6)*
H2N20.404 (2)0.312 (3)−0.1211 (17)0.086 (7)*
H1N20.466 (2)0.227 (3)−0.206 (2)0.096 (8)*
H1O10.308 (2)−0.022 (3)0.6119 (18)0.100 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.1250 (15)0.1378 (15)0.0725 (10)−0.0338 (12)0.0163 (10)0.0395 (10)
O20.1126 (12)0.0943 (11)0.0705 (9)−0.0427 (9)0.0308 (9)−0.0029 (8)
O30.1091 (13)0.1526 (16)0.0486 (8)0.0056 (12)0.0099 (9)0.0157 (10)
O40.1112 (14)0.1306 (15)0.0794 (11)−0.0074 (12)−0.0228 (10)−0.0167 (10)
C10.0660 (11)0.0552 (9)0.0472 (9)−0.0033 (8)0.0125 (8)−0.0049 (7)
C20.0717 (12)0.0679 (11)0.0459 (9)0.0020 (9)0.0182 (8)0.0024 (8)
C30.0639 (12)0.0761 (12)0.0709 (12)−0.0040 (10)0.0236 (10)0.0115 (10)
C40.0502 (10)0.0771 (12)0.0731 (13)−0.0024 (9)0.0072 (9)−0.0031 (10)
C50.0560 (10)0.0579 (9)0.0500 (9)0.0147 (8)0.0100 (8)−0.0032 (7)
C60.0617 (10)0.0460 (8)0.0478 (9)0.0080 (7)0.0185 (8)−0.0019 (7)
C70.0707 (13)0.0821 (14)0.0587 (11)0.0237 (11)0.0026 (10)−0.0087 (10)
C80.0841 (14)0.0567 (10)0.0575 (11)−0.0010 (9)0.0265 (10)0.0015 (8)
N10.0587 (9)0.0533 (8)0.0517 (8)0.0012 (7)0.0158 (7)−0.0046 (6)
N20.0868 (13)0.0727 (11)0.0517 (10)0.0110 (9)0.0079 (9)−0.0033 (8)
C90.0635 (11)0.0470 (8)0.0502 (9)−0.0094 (8)0.0140 (8)−0.0026 (7)
C100.0753 (12)0.0588 (10)0.0532 (10)−0.0047 (9)0.0225 (9)−0.0102 (8)
C110.0617 (11)0.0564 (10)0.0710 (11)0.0005 (8)0.0216 (9)−0.0101 (9)
C120.0543 (10)0.0569 (9)0.0613 (10)−0.0037 (8)0.0133 (8)−0.0035 (8)
C130.0642 (11)0.0639 (10)0.0468 (9)−0.0019 (9)0.0124 (8)−0.0036 (8)
C140.0699 (13)0.0880 (14)0.0781 (13)0.0120 (11)0.0064 (11)−0.0013 (11)

Geometric parameters (Å, °)

O1—C81.263 (2)N1—C91.345 (2)
O1—H1O11.16 (3)N1—C131.359 (2)
O2—C81.227 (2)N1—H1N10.93 (2)
O3—C71.286 (3)N2—C91.325 (2)
O3—H1O11.22 (3)N2—H2N20.95 (2)
O4—C71.203 (3)N2—H1N20.90 (3)
C1—C21.376 (2)C9—C101.407 (3)
C1—C61.396 (2)C10—C111.350 (3)
C1—H1A0.9300C10—H10A0.9300
C2—C31.359 (3)C11—C121.409 (2)
C2—H2A0.9300C11—H11A0.9300
C3—C41.378 (3)C12—C131.355 (2)
C3—H3A0.9300C12—C141.499 (3)
C4—C51.397 (3)C13—H13A0.9300
C4—H4A0.9300C14—H14A0.9600
C5—C61.406 (2)C14—H14B0.9600
C5—C71.525 (3)C14—H14C0.9600
C6—C81.520 (3)
C8—O1—H1O1111.6 (12)C9—N1—H1N1117.5 (11)
C7—O3—H1O1110.1 (11)C13—N1—H1N1120.1 (11)
C2—C1—C6122.40 (17)C9—N2—H2N2119.9 (13)
C2—C1—H1A118.8C9—N2—H1N2114.5 (15)
C6—C1—H1A118.8H2N2—N2—H1N2125 (2)
C3—C2—C1119.53 (17)N2—C9—N1119.25 (17)
C3—C2—H2A120.2N2—C9—C10123.33 (17)
C1—C2—H2A120.2N1—C9—C10117.42 (16)
C2—C3—C4119.66 (18)C11—C10—C9119.81 (16)
C2—C3—H3A120.2C11—C10—H10A120.1
C4—C3—H3A120.2C9—C10—H10A120.1
C3—C4—C5122.31 (18)C10—C11—C12122.15 (17)
C3—C4—H4A118.8C10—C11—H11A118.9
C5—C4—H4A118.8C12—C11—H11A118.9
C4—C5—C6117.98 (16)C13—C12—C11116.12 (16)
C4—C5—C7113.14 (18)C13—C12—C14122.30 (17)
C6—C5—C7128.82 (17)C11—C12—C14121.58 (17)
C1—C6—C5118.08 (16)C12—C13—N1122.04 (16)
C1—C6—C8113.62 (16)C12—C13—H13A119.0
C5—C6—C8128.29 (16)N1—C13—H13A119.0
O4—C7—O3119.6 (2)C12—C14—H14A109.5
O4—C7—C5120.4 (2)C12—C14—H14B109.5
O3—C7—C5120.0 (2)H14A—C14—H14B109.5
O2—C8—O1121.58 (19)C12—C14—H14C109.5
O2—C8—C6118.33 (16)H14A—C14—H14C109.5
O1—C8—C6120.09 (19)H14B—C14—H14C109.5
C9—N1—C13122.45 (16)
C6—C1—C2—C31.1 (3)C1—C6—C8—O2−1.1 (2)
C1—C2—C3—C4−1.9 (3)C5—C6—C8—O2178.03 (17)
C2—C3—C4—C50.7 (3)C1—C6—C8—O1178.51 (19)
C3—C4—C5—C61.2 (3)C5—C6—C8—O1−2.3 (3)
C3—C4—C5—C7−176.18 (17)C13—N1—C9—N2−179.69 (16)
C2—C1—C6—C50.8 (3)C13—N1—C9—C100.1 (2)
C2—C1—C6—C8−179.89 (16)N2—C9—C10—C11179.23 (17)
C4—C5—C6—C1−1.9 (2)N1—C9—C10—C11−0.5 (3)
C7—C5—C6—C1175.00 (16)C9—C10—C11—C120.6 (3)
C4—C5—C6—C8178.91 (16)C10—C11—C12—C13−0.1 (3)
C7—C5—C6—C8−4.1 (3)C10—C11—C12—C14179.80 (18)
C4—C5—C7—O45.3 (3)C11—C12—C13—N1−0.3 (3)
C6—C5—C7—O4−171.79 (19)C14—C12—C13—N1179.74 (17)
C4—C5—C7—O3−176.07 (19)C9—N1—C13—C120.4 (3)
C6—C5—C7—O36.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.928 (19)1.786 (19)2.713 (2)175.7 (17)
N2—H2N2···O1i0.95 (2)1.97 (2)2.907 (3)173 (2)
N2—H1N2···O3ii0.90 (3)2.39 (3)3.161 (2)143 (2)
N2—H1N2···O4ii0.90 (3)2.28 (3)3.151 (3)162 (2)
O1—H1O1···O31.16 (2)1.22 (2)2.382 (3)175 (2)

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2402).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ermer, O. (1981). Helv. Chim. Acta, 64, 1902–1909.
  • Jessen, S. M. (1990). Acta Cryst. C46, 1513–1515.
  • Jin, Z. M., Pan, Y. J., He, L., Li, Z. G. & Yu, K. B. (2003). Anal. Sci.19, 333–334. [PubMed]
  • Küppers, H. (1978). Acta Cryst. B34, 3763–3765.
  • Küppers, H. (1981). Cryst. Struct. Commun. B10, 989–992.
  • Nowacki, W. & Jaggi, H. (1957). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem.64, 272–283.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography