PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2462.
Published online 2010 August 28. doi:  10.1107/S1600536810033489
PMCID: PMC3008099

10-(2-Pyrid­yloxy)phenanthren-9-ol

Abstract

In the title compound, C19H13NO2, the pyridyl ring makes a dihedral angle of 87.04 (6)° with the plane of the phenanthrene ring system. In the crystal, mol­ecules are linked through weak inter­molecular C—H(...)O hydrogen bonds and C—H(...)π inter­actions.

Related literature

For the biological activity of heterocyclic compounds containing a pyridine ring, see: Amr & Abdulla (2006 [triangle]); Borgna et al. (1993 [triangle]); Goda et al. (2004 [triangle]); Kamal et al. (2007 [triangle]). For related structures, see: Krivopalov & Shkurko (2005 [triangle]); Li & Flood (2008 [triangle]); Meudtner & Hecht (2008 [triangle]); Richardson et al. (2008 [triangle]); Schweinfurth et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2462-scheme1.jpg

Experimental

Crystal data

  • C19H13NO2
  • M r = 287.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2462-efi9.jpg
  • a = 8.9379 (6) Å
  • b = 8.6433 (10) Å
  • c = 18.389 (3) Å
  • β = 96.088 (8)°
  • V = 1412.6 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.71 mm−1
  • T = 293 K
  • 0.3 × 0.25 × 0.2 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 2530 measured reflections
  • 2384 independent reflections
  • 1828 reflections with I > 2σ(I)
  • R int = 0.036
  • 2 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.158
  • S = 1.07
  • 2384 reflections
  • 200 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033489/lx2166sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033489/lx2166Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Management of The New College (Autonomous), Chennai, India, for providing the necessary facilities.

supplementary crystallographic information

Comment

Heterocyclic compounds containing the pyridine ring are reported to possess a diverse range of biological activities such as antimicrobial, antitumor and anti–inflammatory (Amr & Abdulla, 2006; Borgna et al., 1993; Goda et al., 2004; Kamal et al., 2007) properties. Pyridyl functionalized 1,2,3–triazoles have begun attracting significant attention in a range of areas including anion recognition (Li & Flood, 2008), stimuli responsive foldamers (Meudtner & Hecht, 2008), drug discovery (Krivopalov & Shkurko, 2005) and coordination chemistry (Richardson et al., 2008; Schweinfurth et al., 2008). Against this background the structure of the title compound was determined by X–ray diffraction. Here we report the crystal structure of the title compound (Fig. 1).

The phenanthrene plane is essentially planar, with a mean deviation of 0.011 (2) |%A from the least-squares plane defined by the fourteen constituent atoms. The dihedral angle formed by the phenanthrene plane and the pyridyl ring is 87.04 (6)°. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the pyidyl H atom and the oxygen of the hydroxyl group, with a C3—H3···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by two intermolecular C—H···π interactions; the first one between the benzene H atom of the phenanthrene unit and the pyridyl ring, with a C10—H10···Cg1, the second one between the benzene H atom of the phenanthrene unit and the central benzene ring of a neighbouring molecule, with a C15—H15···Cg2 (Table 1; Cg1 and Cg2 are the centroids of the N1/C1—C5 pyridyl ring and the C6/C7/C12/C13/C18/C19 benzene ring, respectively).

Experimental

To a solution of 2–pyridyl magnesium bromide in dry THF at 273° under nitrogen atomsphere, solution of phenanthren-9,10-dione in dry THF was added dropwise. After the addition, the mixture was stirred at room temp under nitrogen atmosphere for 3 h. After the completion of reaction as evidenced by TLC, the reaction was quenched with saturated solution of ammonium chloride and the mixture was extracted into diethyl ether. The organic layer was concentrated at reduced pressure. The residue was purified by coloumn chromotography (hexane-ethyl acetate, 9:1 v/v) to afford the title compound as a pale yellow solid (yield 75%, m.p. 418° K). Single crystals suitable for X–ray diffraction was recrystallized from mixture of dichlromehane-hexane (8: 2 v/v) as solvent.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) -x + 1, -y + 1, - z + 1; (ii) x, ...

Crystal data

C19H13NO2F(000) = 600
Mr = 287.30Dx = 1.351 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.9379 (6) Åθ = 20–32°
b = 8.6433 (10) ŵ = 0.71 mm1
c = 18.389 (3) ÅT = 293 K
β = 96.088 (8)°Block, yellow
V = 1412.6 (3) Å30.3 × 0.25 × 0.2 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.036
Radiation source: fine-focus sealed tubeθmax = 64.9°, θmin = 4.8°
graphiteh = 0→10
ω–2θ scank = 0→10
2530 measured reflectionsl = −21→21
2384 independent reflections2 standard reflections every 100 reflections
1828 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.158w = 1/[σ2(Fo2) + (0.0879P)2 + 0.3509P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2384 reflectionsΔρmax = 0.34 e Å3
200 parametersΔρmin = −0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0161 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.28079 (19)0.0991 (2)0.50744 (9)0.0552 (5)
O10.48937 (16)0.09045 (15)0.58522 (7)0.0539 (4)
O20.75971 (19)0.19460 (18)0.54090 (8)0.0639 (5)
H20.68700.15720.51610.096*
C10.1729 (3)0.1774 (3)0.46753 (13)0.0687 (7)
H10.09950.12130.43920.082*
C20.1638 (3)0.3354 (3)0.46580 (14)0.0734 (7)
H2A0.08760.38540.43640.088*
C30.2706 (3)0.4179 (3)0.50877 (13)0.0675 (7)
H30.26660.52540.50940.081*
C40.3832 (3)0.3413 (3)0.55083 (12)0.0566 (6)
H40.45660.39490.58030.068*
C50.3832 (2)0.1817 (2)0.54766 (10)0.0470 (5)
C60.5977 (2)0.1611 (2)0.63482 (10)0.0474 (5)
C70.5655 (2)0.1757 (2)0.70924 (11)0.0480 (5)
C80.4266 (3)0.1302 (3)0.73138 (13)0.0596 (6)
H80.35360.08840.69720.072*
C90.3968 (3)0.1465 (3)0.80255 (14)0.0690 (7)
H90.30420.11630.81660.083*
C100.5066 (3)0.2086 (3)0.85376 (14)0.0711 (7)
H100.48700.21970.90210.085*
C110.6431 (3)0.2533 (3)0.83355 (12)0.0619 (6)
H110.71520.29340.86870.074*
C120.6769 (2)0.2399 (2)0.76057 (11)0.0493 (5)
C130.8179 (2)0.2907 (2)0.73679 (11)0.0501 (5)
C140.9345 (3)0.3569 (3)0.78452 (13)0.0637 (6)
H140.91970.37170.83330.076*
C151.0677 (3)0.3998 (3)0.76122 (15)0.0724 (7)
H151.14280.44210.79420.087*
C161.0924 (3)0.3807 (3)0.68872 (15)0.0711 (7)
H161.18370.41070.67310.085*
C170.9837 (3)0.3184 (3)0.64021 (13)0.0610 (6)
H171.00130.30560.59160.073*
C180.8444 (2)0.2729 (2)0.66282 (11)0.0499 (5)
C190.7291 (2)0.2060 (2)0.61153 (10)0.0490 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0622 (11)0.0553 (11)0.0456 (10)0.0030 (9)−0.0056 (8)−0.0065 (8)
O10.0661 (9)0.0412 (8)0.0506 (8)0.0005 (6)−0.0119 (7)−0.0040 (6)
O20.0903 (11)0.0595 (9)0.0425 (8)−0.0129 (8)0.0099 (7)−0.0048 (7)
C10.0683 (14)0.0799 (17)0.0541 (13)0.0067 (13)−0.0111 (11)−0.0061 (12)
C20.0766 (16)0.0800 (18)0.0613 (15)0.0221 (14)−0.0028 (12)0.0118 (13)
C30.0822 (16)0.0522 (14)0.0689 (15)0.0120 (12)0.0120 (13)0.0076 (11)
C40.0687 (14)0.0476 (12)0.0531 (12)0.0002 (10)0.0046 (10)−0.0013 (10)
C50.0572 (12)0.0475 (11)0.0356 (10)0.0030 (9)0.0022 (8)−0.0007 (8)
C60.0610 (12)0.0360 (10)0.0427 (10)−0.0001 (9)−0.0062 (9)−0.0026 (8)
C70.0594 (12)0.0371 (10)0.0463 (11)0.0049 (9)0.0004 (9)0.0001 (8)
C80.0681 (14)0.0507 (12)0.0596 (13)−0.0014 (11)0.0040 (11)−0.0012 (10)
C90.0797 (16)0.0602 (15)0.0705 (16)−0.0034 (12)0.0234 (13)0.0006 (12)
C100.1028 (19)0.0614 (15)0.0528 (13)−0.0004 (14)0.0252 (13)−0.0022 (11)
C110.0860 (17)0.0543 (13)0.0444 (12)−0.0012 (12)0.0023 (11)−0.0055 (10)
C120.0646 (13)0.0387 (10)0.0431 (11)0.0052 (9)−0.0009 (9)−0.0002 (8)
C130.0608 (13)0.0403 (10)0.0471 (11)0.0044 (9)−0.0051 (9)−0.0016 (9)
C140.0711 (15)0.0630 (14)0.0534 (13)−0.0028 (12)−0.0099 (11)−0.0073 (11)
C150.0687 (15)0.0661 (16)0.0781 (17)−0.0094 (13)−0.0118 (13)−0.0095 (13)
C160.0618 (14)0.0638 (15)0.0872 (18)−0.0101 (12)0.0058 (12)−0.0036 (14)
C170.0701 (14)0.0528 (13)0.0607 (13)−0.0049 (11)0.0100 (11)−0.0015 (11)
C180.0617 (13)0.0386 (10)0.0483 (11)0.0018 (9)0.0008 (9)−0.0011 (8)
C190.0679 (13)0.0386 (11)0.0401 (11)0.0022 (9)0.0028 (9)−0.0016 (8)

Geometric parameters (Å, °)

N1—C51.323 (3)C8—H80.9300
N1—C11.333 (3)C9—C101.394 (4)
O1—C51.364 (2)C9—H90.9300
O1—C61.398 (2)C10—C111.368 (4)
O2—C191.359 (2)C10—H100.9300
O2—H20.8200C11—C121.411 (3)
C1—C21.368 (4)C11—H110.9300
C1—H10.9300C12—C131.445 (3)
C2—C31.372 (4)C13—C141.411 (3)
C2—H2A0.9300C13—C181.413 (3)
C3—C41.373 (3)C14—C151.359 (3)
C3—H30.9300C14—H140.9300
C4—C51.381 (3)C15—C161.384 (4)
C4—H40.9300C15—H150.9300
C6—C191.350 (3)C16—C171.359 (3)
C6—C71.434 (3)C16—H160.9300
C7—C81.403 (3)C17—C181.410 (3)
C7—C121.411 (3)C17—H170.9300
C8—C91.370 (3)C18—C191.441 (3)
C5—N1—C1116.8 (2)C11—C10—C9120.6 (2)
C5—O1—C6118.32 (15)C11—C10—H10119.7
C19—O2—H2109.5C9—C10—H10119.7
N1—C1—C2123.9 (2)C10—C11—C12121.5 (2)
N1—C1—H1118.1C10—C11—H11119.3
C2—C1—H1118.1C12—C11—H11119.3
C1—C2—C3118.0 (2)C7—C12—C11117.5 (2)
C1—C2—H2A121.0C7—C12—C13119.54 (19)
C3—C2—H2A121.0C11—C12—C13122.99 (19)
C2—C3—C4119.8 (2)C14—C13—C18117.1 (2)
C2—C3—H3120.1C14—C13—C12123.0 (2)
C4—C3—H3120.1C18—C13—C12119.90 (19)
C3—C4—C5117.5 (2)C15—C14—C13121.9 (2)
C3—C4—H4121.2C15—C14—H14119.0
C5—C4—H4121.2C13—C14—H14119.0
N1—C5—O1111.97 (18)C14—C15—C16120.4 (2)
N1—C5—C4123.98 (19)C14—C15—H15119.8
O1—C5—C4124.04 (18)C16—C15—H15119.8
C19—C6—O1118.98 (18)C17—C16—C15120.2 (2)
C19—C6—C7123.17 (19)C17—C16—H16119.9
O1—C6—C7117.78 (18)C15—C16—H16119.9
C8—C7—C12119.97 (19)C16—C17—C18120.6 (2)
C8—C7—C6121.70 (19)C16—C17—H17119.7
C12—C7—C6118.32 (19)C18—C17—H17119.7
C9—C8—C7121.1 (2)C17—C18—C13119.8 (2)
C9—C8—H8119.5C17—C18—C19120.7 (2)
C7—C8—H8119.5C13—C18—C19119.50 (19)
C8—C9—C10119.4 (2)C6—C19—O2123.53 (19)
C8—C9—H9120.3C6—C19—C18119.55 (18)
C10—C9—H9120.3O2—C19—C18116.91 (18)
C5—N1—C1—C20.4 (3)C10—C11—C12—C7−1.2 (3)
N1—C1—C2—C3−1.2 (4)C10—C11—C12—C13177.9 (2)
C1—C2—C3—C41.0 (4)C7—C12—C13—C14179.54 (19)
C2—C3—C4—C50.0 (3)C11—C12—C13—C140.5 (3)
C1—N1—C5—O1−178.97 (18)C7—C12—C13—C18−1.3 (3)
C1—N1—C5—C40.6 (3)C11—C12—C13—C18179.68 (19)
C6—O1—C5—N1−174.68 (17)C18—C13—C14—C15−1.1 (3)
C6—O1—C5—C45.7 (3)C12—C13—C14—C15178.1 (2)
C3—C4—C5—N1−0.9 (3)C13—C14—C15—C160.7 (4)
C3—C4—C5—O1178.70 (18)C14—C15—C16—C17−0.3 (4)
C5—O1—C6—C19−91.9 (2)C15—C16—C17—C180.3 (4)
C5—O1—C6—C790.9 (2)C16—C17—C18—C13−0.7 (3)
C19—C6—C7—C8178.89 (19)C16—C17—C18—C19−179.7 (2)
O1—C6—C7—C8−4.0 (3)C14—C13—C18—C171.1 (3)
C19—C6—C7—C12−0.2 (3)C12—C13—C18—C17−178.16 (19)
O1—C6—C7—C12176.95 (16)C14—C13—C18—C19−179.92 (19)
C12—C7—C8—C9−0.2 (3)C12—C13—C18—C190.8 (3)
C6—C7—C8—C9−179.3 (2)O1—C6—C19—O23.9 (3)
C7—C8—C9—C10−0.3 (4)C7—C6—C19—O2−179.02 (18)
C8—C9—C10—C110.0 (4)O1—C6—C19—C18−177.34 (17)
C9—C10—C11—C120.7 (4)C7—C6—C19—C18−0.2 (3)
C8—C7—C12—C110.9 (3)C17—C18—C19—C6178.89 (19)
C6—C7—C12—C11−179.97 (18)C13—C18—C19—C6−0.1 (3)
C8—C7—C12—C13−178.16 (18)C17—C18—C19—O2−2.2 (3)
C6—C7—C12—C130.9 (3)C13—C18—C19—O2178.76 (17)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1–C5 and C6/C7/C12/C13/C18/C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.593.475 (3)159.
C10—H10···Cg1ii0.932.863.691 (3)150
C15—H15···Cg2iii0.932.803.537 (3)137

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2166).

References

  • Amr, A. G. E. & Abdulla, M. M. (2006). Bioorg. Med. Chem.14, 4341–4352. [PubMed]
  • Borgna, P., Pregnolato, M., Gamba, I. A. & Mellerio, G. (1993). J. Heterocycl. Chem.30, 1079–1084.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Goda, F. E., Abdel-Aziz, A. A.-M. & Attef, O. A. (2004). Bioorg. Med. Chem.12, 1845–1852. [PubMed]
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany
  • Kamal, A., Khan, M. N. A., Srinivasa Reddy, K. & Rohini, K. (2007). Bioorg. Med. Chem.15, 1004–1013. [PubMed]
  • Krivopalov, V. P. & Shkurko, O. P. (2005). Russ. Chem. Rev.74, 339–379.
  • Li, Y. & Flood, A. H. (2008). Angew. Chem. Int. Ed.47, 2649–2652. [PubMed]
  • Meudtner, R. M. & Hecht, S. (2008). Angew. Chem. Int. Ed.47, 4926–4930. [PubMed]
  • Richardson, C., Fitchett, C. M., Keene, F. R. & Steel, P. J. (2008). Dalton Trans. pp. 2534–2537. [PubMed]
  • Schweinfurth, D., Hardcastle, K. I. & Bunz, U. H. F. (2008). Chem. Commun. pp. 2203–2205. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography