PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1076.
Published online 2010 August 11. doi:  10.1107/S1600536810030667
PMCID: PMC3008097

Bis{1-[(4-methyl­phen­yl)imino­meth­yl]-2-naphtho­lato-κ2 N,O}copper(II)

Abstract

In the title complex, [Cu(C18H14NO)2], the CuII ion lies on an inversion center and is coordinated in a slightly distorted square-planar environment. The 1-[(4-methyl­phen­yl)imino­meth­yl]-2-naphtho­late ligands are coordinated in a trans arrangement with respect to the N and O atoms.

Related literature

For background information and applications of Schiff base complexes, see: Adsule et al. (2006 [triangle]); Barton et al. (1979 [triangle]); Cohen et al. (1964 [triangle]); Henrici-Olive & Olive (1984 [triangle]); Erxleben & Schumacher (2001 [triangle]). For related structures, see: Kani et al. (1998 [triangle]); Lo et al. (1997 [triangle]); Ünver (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1076-scheme1.jpg

Experimental

Crystal data

  • [Cu(C18H14NO)2]
  • M r = 584.14
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1076-efi1.jpg
  • a = 7.0948 (6) Å
  • b = 10.2335 (7) Å
  • c = 10.5784 (10) Å
  • α = 104.559 (7)°
  • β = 98.728 (7)°
  • γ = 102.573 (7)°
  • V = 708.01 (10) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 293 K
  • 0.25 × 0.12 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.824, T max = 0.916
  • 7213 measured reflections
  • 2878 independent reflections
  • 2395 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.076
  • S = 1.01
  • 2878 reflections
  • 188 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030667/lh5095sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030667/lh5095Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Shandong Province (2007BS02016).

supplementary crystallographic information

Comment

Schiff bases and their metal complexes have aroused considerable attention, mainly because of their interesting structures and potential applications, e.g. catalytic activity (Henrici-Olive & Olive et al., 1984), photochromic properties (Cohen et al., 1964), biological activity (Barton et al., 1979). Additionally, copper (II) complexes of Schiff bases have been reported for their applications in the design and construction of new magnetic materials (Erxleben & Schumacher, 2001), and their cellular proteasome activity (Adsule et al., 2006). Herein we report the synthesis and crystal structure of the title complex.

The molecular structure of the title complex is shown in Fig. 1. The CuII ion is coordinated by two O atoms and two N atoms of two bidentate schiff base ligands to form a square-planar geometry in a trans arrangement. The Cu—N and Cu—O bond lengths agree with those in related complexes (e.g. Kani et al., 1998; Lo et al., 1997; Ünver, 2002).

Experimental

Copper(II) acetate hydrate (0.199 g, 0.001 mol) in methanol (50 ml) and N-(p-Tolyl)-2-hydroxy-1-naphthaldimine (0.586 g, 0.002 mol) in acetonitrile(75 ml) were mixed and heated at 333 K for 1 h. The solution was filtered and the filtrate kept in a beaker at room temperature for crystallization. Black crystals started appearing after 3 days and were then collected, 0.621 g (79%) yields.

Refinement

Hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic H atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure, with atom labels and 25% probability displacement ellipsoids for non-H atoms (symmetry code: (A) -x+1, -y, -z).

Crystal data

[Cu(C18H14NO)2]Z = 1
Mr = 584.14F(000) = 303
Triclinic, P1Dx = 1.370 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0948 (6) ÅCell parameters from 1252 reflections
b = 10.2335 (7) Åθ = 2.5–23.9°
c = 10.5784 (10) ŵ = 0.81 mm1
α = 104.559 (7)°T = 293 K
β = 98.728 (7)°Block, black
γ = 102.573 (7)°0.25 × 0.12 × 0.11 mm
V = 708.01 (10) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer2878 independent reflections
Radiation source: fine-focus sealed tube2395 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −8→8
Tmin = 0.824, Tmax = 0.916k = −12→12
7213 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0431P)2] where P = (Fo2 + 2Fc2)/3
2878 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.00000.00000.03685 (13)
O0.63653 (18)−0.08439 (14)0.10934 (13)0.0465 (3)
N0.3572 (2)0.06231 (15)0.14161 (14)0.0353 (3)
C0.2582 (3)0.17043 (18)0.14181 (17)0.0348 (4)
C10.3384 (3)0.00334 (19)0.23682 (18)0.0374 (4)
H10.25610.03260.29220.045*
C20.5826 (3)−0.13173 (18)0.20525 (18)0.0380 (4)
C50.0594 (3)0.14665 (19)0.14435 (19)0.0403 (4)
H5−0.01380.05840.14190.048*
C6−0.0300 (3)0.2550 (2)0.15063 (19)0.0464 (5)
H6−0.16360.23800.15250.056*
C70.3611 (3)0.30083 (19)0.13974 (19)0.0443 (5)
H70.49290.31670.13320.053*
C80.3767 (3)−0.16156 (19)0.37004 (18)0.0397 (4)
C90.0726 (3)0.3872 (2)0.15411 (19)0.0459 (5)
C100.4283 (3)−0.09993 (19)0.26615 (18)0.0366 (4)
C120.2192 (3)−0.1408 (2)0.43269 (19)0.0481 (5)
H120.1454−0.08240.40910.058*
C140.4870 (3)−0.24967 (19)0.41041 (19)0.0452 (5)
C150.2694 (3)0.4076 (2)0.1473 (2)0.0493 (5)
H150.34170.49520.14780.059*
C17−0.0240 (4)0.5069 (2)0.1698 (3)0.0680 (7)
H17A−0.16120.47140.12530.102*
H17B0.04110.57440.13080.102*
H17C−0.01320.55070.26310.102*
C180.6458 (3)−0.2737 (2)0.3493 (2)0.0530 (5)
H180.7205−0.32930.37790.064*
C190.1725 (3)−0.2047 (2)0.5277 (2)0.0595 (6)
H190.0684−0.18890.56780.071*
C200.6920 (3)−0.2190 (2)0.2516 (2)0.0493 (5)
H200.7966−0.23800.21360.059*
C210.2798 (4)−0.2931 (2)0.5642 (2)0.0651 (6)
H210.2455−0.33790.62700.078*
C230.4339 (4)−0.3138 (2)0.5084 (2)0.0602 (6)
H230.5067−0.37140.53500.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03127 (19)0.0423 (2)0.0432 (2)0.01461 (14)0.01515 (13)0.01531 (15)
O0.0397 (7)0.0623 (9)0.0530 (8)0.0251 (7)0.0218 (6)0.0273 (7)
N0.0314 (8)0.0371 (8)0.0410 (9)0.0132 (7)0.0112 (6)0.0126 (7)
C0.0350 (9)0.0366 (10)0.0338 (10)0.0135 (8)0.0105 (7)0.0072 (8)
C10.0311 (9)0.0421 (11)0.0391 (11)0.0110 (8)0.0121 (8)0.0083 (9)
C20.0334 (10)0.0379 (10)0.0413 (11)0.0095 (8)0.0072 (8)0.0100 (9)
C50.0370 (10)0.0388 (10)0.0472 (11)0.0122 (8)0.0149 (8)0.0110 (9)
C60.0369 (10)0.0510 (12)0.0538 (12)0.0192 (9)0.0159 (9)0.0098 (10)
C70.0342 (10)0.0436 (11)0.0559 (13)0.0101 (9)0.0109 (8)0.0157 (10)
C80.0415 (10)0.0365 (10)0.0368 (10)0.0058 (8)0.0065 (8)0.0086 (8)
C90.0523 (12)0.0435 (12)0.0434 (11)0.0232 (10)0.0105 (9)0.0067 (9)
C100.0349 (10)0.0374 (10)0.0373 (10)0.0095 (8)0.0082 (7)0.0107 (8)
C120.0501 (12)0.0532 (13)0.0444 (12)0.0134 (10)0.0153 (9)0.0179 (10)
C140.0548 (12)0.0391 (11)0.0396 (11)0.0107 (9)0.0063 (9)0.0120 (9)
C150.0516 (12)0.0363 (11)0.0581 (13)0.0090 (10)0.0085 (10)0.0148 (10)
C170.0777 (17)0.0590 (14)0.0781 (17)0.0410 (13)0.0208 (13)0.0175 (13)
C180.0584 (13)0.0500 (13)0.0570 (14)0.0249 (11)0.0082 (10)0.0210 (11)
C190.0625 (14)0.0696 (15)0.0463 (13)0.0101 (12)0.0208 (10)0.0184 (12)
C200.0465 (12)0.0539 (13)0.0569 (13)0.0255 (10)0.0160 (9)0.0195 (11)
C210.0892 (18)0.0648 (15)0.0485 (13)0.0162 (14)0.0222 (12)0.0289 (12)
C230.0826 (17)0.0534 (14)0.0500 (13)0.0206 (12)0.0130 (12)0.0233 (11)

Geometric parameters (Å, °)

Cu1—Oi1.8837 (12)C8—C141.417 (3)
Cu1—O1.8837 (12)C8—C101.452 (3)
Cu1—N1.9848 (14)C9—C151.382 (3)
Cu1—Ni1.9848 (14)C9—C171.515 (2)
O—C21.302 (2)C12—C191.373 (3)
N—C11.307 (2)C12—H120.9300
N—C1.434 (2)C14—C231.414 (3)
C—C71.382 (2)C14—C181.417 (3)
C—C51.384 (2)C15—H150.9300
C1—C101.420 (2)C17—H17A0.9600
C1—H10.9300C17—H17B0.9600
C2—C101.408 (2)C17—H17C0.9600
C2—C201.431 (2)C18—C201.343 (3)
C5—C61.385 (2)C18—H180.9300
C5—H50.9300C19—C211.390 (3)
C6—C91.378 (3)C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C151.380 (2)C21—C231.350 (3)
C7—H70.9300C21—H210.9300
C8—C121.411 (3)C23—H230.9300
Oi—Cu1—O180C2—C10—C1120.13 (16)
Oi—Cu1—N89.58 (5)C2—C10—C8119.57 (16)
O—Cu1—N90.42 (5)C1—C10—C8119.94 (16)
Oi—Cu1—Ni90.42 (5)C19—C12—C8121.51 (19)
O—Cu1—Ni89.58 (5)C19—C12—H12119.2
N—Cu1—Ni180C8—C12—H12119.2
C2—O—Cu1128.62 (11)C23—C14—C8119.42 (19)
C1—N—C115.44 (14)C23—C14—C18121.54 (18)
C1—N—Cu1122.54 (12)C8—C14—C18119.03 (18)
C—N—Cu1121.94 (11)C7—C15—C9121.53 (18)
C7—C—C5118.92 (16)C7—C15—H15119.2
C7—C—N120.13 (15)C9—C15—H15119.2
C5—C—N120.95 (16)C9—C17—H17A109.5
N—C1—C10127.97 (17)C9—C17—H17B109.5
N—C1—H1116.0H17A—C17—H17B109.5
C10—C1—H1116.0C9—C17—H17C109.5
O—C2—C10124.11 (16)H17A—C17—H17C109.5
O—C2—C20116.69 (16)H17B—C17—H17C109.5
C10—C2—C20119.19 (17)C20—C18—C14122.24 (18)
C—C5—C6119.60 (17)C20—C18—H18118.9
C—C5—H5120.2C14—C18—H18118.9
C6—C5—H5120.2C12—C19—C21120.4 (2)
C9—C6—C5122.15 (17)C12—C19—H19119.8
C9—C6—H6118.9C21—C19—H19119.8
C5—C6—H6118.9C18—C20—C2120.91 (19)
C15—C7—C120.38 (17)C18—C20—H20119.5
C15—C7—H7119.8C2—C20—H20119.5
C—C7—H7119.8C23—C21—C19120.0 (2)
C12—C8—C14117.34 (17)C23—C21—H21120.0
C12—C8—C10123.66 (17)C19—C21—H21120.0
C14—C8—C10118.99 (17)C21—C23—C14121.4 (2)
C6—C9—C15117.32 (17)C21—C23—H23119.3
C6—C9—C17121.49 (18)C14—C23—H23119.3
C15—C9—C17121.16 (19)
Oi—Cu1—O—C2−71 (100)C20—C2—C10—C8−3.0 (3)
N—Cu1—O—C225.66 (16)N—C1—C10—C211.9 (3)
Ni—Cu1—O—C2−154.34 (16)N—C1—C10—C8−174.99 (17)
Oi—Cu1—N—C1159.10 (14)C12—C8—C10—C2−177.19 (18)
O—Cu1—N—C1−20.90 (14)C14—C8—C10—C21.7 (3)
Ni—Cu1—N—C1−22 (100)C12—C8—C10—C19.7 (3)
Oi—Cu1—N—C−17.40 (13)C14—C8—C10—C1−171.42 (16)
O—Cu1—N—C162.60 (13)C14—C8—C12—C19−0.9 (3)
Ni—Cu1—N—C162 (100)C10—C8—C12—C19178.02 (18)
C1—N—C—C7127.26 (18)C12—C8—C14—C231.0 (3)
Cu1—N—C—C7−56.0 (2)C10—C8—C14—C23−177.99 (17)
C1—N—C—C5−52.6 (2)C12—C8—C14—C18179.69 (18)
Cu1—N—C—C5124.13 (16)C10—C8—C14—C180.7 (3)
C—N—C1—C10−176.06 (16)C—C7—C15—C9−1.4 (3)
Cu1—N—C1—C107.2 (3)C6—C9—C15—C7−1.2 (3)
Cu1—O—C2—C10−15.1 (3)C17—C9—C15—C7176.7 (2)
Cu1—O—C2—C20166.16 (12)C23—C14—C18—C20176.8 (2)
C7—C—C5—C6−2.8 (3)C8—C14—C18—C20−1.9 (3)
N—C—C5—C6177.08 (17)C8—C12—C19—C21−0.3 (3)
C—C5—C6—C90.2 (3)C14—C18—C20—C20.6 (3)
C5—C—C7—C153.4 (3)O—C2—C20—C18−179.34 (18)
N—C—C7—C15−176.46 (17)C10—C2—C20—C181.9 (3)
C5—C6—C9—C151.8 (3)C12—C19—C21—C231.5 (4)
C5—C6—C9—C17−176.09 (19)C19—C21—C23—C14−1.5 (4)
O—C2—C10—C1−8.6 (3)C8—C14—C23—C210.2 (3)
C20—C2—C10—C1170.11 (16)C18—C14—C23—C21−178.5 (2)
O—C2—C10—C8178.34 (16)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5095).

References

  • Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem.49, 7242–7246. [PubMed]
  • Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon Press.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.
  • Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem.12, 3039–3046.
  • Henrici-Olive, G. & Olive, S. (1984). The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide Berlin: Springer.
  • Kani, Y., Ohba, S., Ishikawa, T., Sakamoto, M. & Nishida, Y. (1998). Acta Cryst. C54, 191–193.
  • Lo, J.-M., Yao, H.-H., Liao, F.-L., Wang, S.-L. & Lu, T.-H. (1997). Acta Cryst. C53, 848–850.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ünver, H. (2002). J. Mol. Struct.641, 35–40.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography