PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2399.
Published online 2010 August 25. doi:  10.1107/S1600536810033532
PMCID: PMC3008094

Bis(imidazolium) galacta­rate dihydrate

Abstract

In the structure of the title salt, 2C3H5N2 +·C6H8O8 2−·2H2O, the galacta­rate dianions have crystallographic inversion symmetry and together with the water mol­ecules of solvation form hydrogen-bonded sheet substructures which extend along (110). The imidazolium cations link these sheets peripherally down c through carboxyl­ate O—H—N and N′—H(...)Ohy­droxy bridges, giving a three-dimensional framework structure.

Related literature

For mention of mucic acid in the Merck Index, see: O’Neil (2001 [triangle]). For the structures of imidazolium hydrogen salts of aliphatic dicarb­oxy­lic acids, see: James & Matsushima (1976 [triangle]); MacDonald et al. (2001 [triangle]); Aakeröy & Hitchcock (1993 [triangle]); Fuller et al. (1995 [triangle]); Fukunaga & Ishida (2003 [triangle]); Trivedi et al. (2003 [triangle]). For the structures of galacta­ric acid, ammonium H galacta­rate, diammonium galacta­rate and copper(II) galacta­rate dihydrate, see: Jeffrey & Wood (1982 [triangle]), Bontchev & Moore (2005 [triangle]), Benetollo et al. (1993 [triangle]) and Ferrier et al. (1998 [triangle]) respectively. For graph-set analysis, see: Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2399-scheme1.jpg

Experimental

Crystal data

  • 2C3H5N2 +·C6H8O8 2−·2H2O
  • M r = 382.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2399-efi1.jpg
  • a = 6.9184 (4) Å
  • b = 7.1336 (4) Å
  • c = 9.3652 (5) Å
  • α = 92.000 (5)°
  • β = 100.559 (5)°
  • γ = 109.835 (6)°
  • V = 425.06 (5) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 200 K
  • 0.45 × 0.45 × 0.30 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010 [triangle]) T min = 0.965, T max = 0.980
  • 4949 measured reflections
  • 1657 independent reflections
  • 1431 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.082
  • S = 1.13
  • 1657 reflections
  • 142 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) within WinGX (Farrugia, 1999 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033532/ng5021sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033532/ng5021Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Australian Research Committee and the Faculty of Science and Technology, Queensland University of Technology.

supplementary crystallographic information

Comment

Galactaric acid (mucic acid) (O'Neil, 2001) is the C6 homologue of tartaric acid but differs from it in being achiral and as well has only a small number of representative crystal structures in the CSD, e.g. the acid itself (Jeffrey & Wood, 1982), ammonium hydrogen galactarate (Bontchev & Moore, 2005), diammonium galactarate (Benetollo et al., 1993) and some metal complexes, e.g. copper(II) galactarate dihydrate (a fungicide) (Ferrier et al., 1998). Because the imidazolium cation has proved to be an excellent linking molecule for the generation of supramolecular layered structures particularly with dicarboxylic acids, including hydroxy acids (James & Matsushima, 1976; MacDonald et al., 2001; Aakeröy & Hitchcock, 1993; Fuller et al., 1995; Fukunaga & Ishida, 2003; Trivedi et al., 2003), we carried out a 1:2 stoichiometric reaction of galactaric acid with imidazole in aqueous ethanol and obtained large relatively hard, chemically stable crystals of the title compound, 2(CH6N3+) C6H8O82-. 2H2O (I), and the structure is reported here.

In the structure of (I) (Fig. 1), the galactarate anions lie across crystallographic inversion centres which is also the case in the structure of the parent acid (Jeffrey & Wood, 1982). Hydrogen-bonded anion-water sheets extending across the <100> planes in the unit cell (Fig. 2) are formed through hydroxyl O31–H···O12iiicarboxyl and water-bridging O31···O11ivcarboxyl interactions (for symmetry codes, see Table 1). These include R22(12) and R33(12) cyclic motifs (Etter et al., 1990). The layered substructures are linked peripherally down the c cell direction by the imidazolium cations through carboxyl O···HN,N'—H···O`hydroxyl bridges giving a three-dimensional framework structure (Fig. 3). The structure of (I) differs from those of the anhydrous 1:1 salts of the hydrogen dicarboxylates (MacDonald et al., 2001) in which the bridging imidazolium cations are incorporated within two-dimensional layered structures.

Experimental

The title compound was synthesized by heating together under reflux for 10 minutes 1 mmol of galactaric acid (mucic acid) and 2 mmol of imidazole in 50 ml of 50% ethanol-water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave large colourless plates of (I) (m.p. 435 K) from which a suitable analytical specimen was cleaved.

Refinement

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement in calculated positions (C–Haromatic = 0.95 Å and others = 1.00 Å) and allowed to ride, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular configuration and atom-numbering scheme for the cation, dianion and water species in (I). The galactarate dianion has inversion symmetry [symmetry code: (i) -x + 1, -y + 1, -z + 2]. Non-H atoms are shown as 50% probability ellipsoids and ...
Fig. 2.
Hydrogen-bonded anion-water sheet substructures in (I), extending across (110) (imidazolium cations are omitted). For symmetry codes, see Table 1. Hydrogen bonds are shown as dashed lines.
Fig. 3.
The three-dimensional structure of (I) viewed down the approximate a cell direction, showing the imidazolium bridges.

Crystal data

2C3H5N2+·C6H8O82·2H2OZ = 1
Mr = 382.34F(000) = 202
Triclinic, P1Dx = 1.494 Mg m3
Hall symbol: -P 1Melting point: 435 K
a = 6.9184 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.1336 (4) ÅCell parameters from 3387 reflections
c = 9.3652 (5) Åθ = 3.5–28.7°
α = 92.000 (5)°µ = 0.13 mm1
β = 100.559 (5)°T = 200 K
γ = 109.835 (6)°Plate, colourless
V = 425.06 (5) Å30.45 × 0.45 × 0.30 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer1657 independent reflections
Radiation source: Enhance (Mo) X-ray source1431 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scansθmax = 26.0°, θmin = 3.5°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)h = −8→8
Tmin = 0.965, Tmax = 0.980k = −8→8
4949 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.13w = 1/[σ2(Fo2) + (0.0444P)2 + 0.0516P] where P = (Fo2 + 2Fc2)/3
1657 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O110.18384 (15)−0.07229 (13)0.80626 (9)0.0234 (3)
O120.26773 (14)−0.02982 (13)1.04961 (9)0.0207 (3)
O210.19607 (14)0.29951 (14)0.78260 (9)0.0203 (3)
O310.62559 (14)0.35914 (13)0.90945 (10)0.0197 (3)
C10.23436 (18)0.03283 (17)0.92558 (13)0.0154 (3)
C20.25848 (18)0.25478 (17)0.92684 (12)0.0151 (3)
C30.48566 (18)0.38863 (17)0.99549 (13)0.0153 (3)
N110.34766 (19)0.22454 (18)0.54570 (12)0.0261 (4)
N310.35478 (19)0.13600 (18)0.32587 (12)0.0265 (4)
C210.2302 (2)0.1404 (2)0.41585 (14)0.0269 (4)
C410.5588 (2)0.2202 (2)0.40018 (15)0.0302 (5)
C510.5544 (2)0.2764 (2)0.53780 (15)0.0285 (4)
O1W−0.02769 (16)0.53271 (15)0.78655 (11)0.0244 (3)
H220.118 (3)0.373 (3)0.7852 (19)0.046 (5)*
H20.163800.280500.987800.0180*
H30.524500.352001.096100.0180*
H320.657 (3)0.260 (3)0.9315 (18)0.040 (5)*
H110.301 (3)0.245 (3)0.625 (2)0.048 (5)*
H210.081000.091500.391600.0320*
H310.318 (3)0.084 (3)0.233 (2)0.044 (5)*
H410.680700.236100.361800.0360*
H510.672400.340100.614800.0340*
H11W0.043 (3)0.660 (4)0.803 (2)0.057 (6)*
H12W−0.127 (4)0.500 (3)0.835 (2)0.059 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O110.0320 (5)0.0168 (5)0.0185 (5)0.0058 (4)0.0047 (4)−0.0032 (4)
O120.0290 (5)0.0158 (5)0.0174 (4)0.0077 (4)0.0056 (4)0.0024 (3)
O210.0257 (5)0.0230 (5)0.0157 (5)0.0135 (4)0.0032 (4)0.0023 (4)
O310.0214 (5)0.0149 (5)0.0265 (5)0.0079 (4)0.0113 (4)0.0032 (4)
C10.0129 (6)0.0148 (6)0.0174 (6)0.0026 (5)0.0051 (4)0.0001 (5)
C20.0185 (6)0.0143 (6)0.0132 (6)0.0058 (5)0.0049 (5)0.0009 (5)
C30.0185 (6)0.0136 (6)0.0144 (6)0.0052 (5)0.0054 (5)0.0017 (5)
N110.0347 (7)0.0308 (7)0.0175 (6)0.0160 (5)0.0084 (5)0.0031 (5)
N310.0379 (7)0.0260 (6)0.0152 (6)0.0116 (5)0.0044 (5)0.0010 (5)
C210.0273 (7)0.0304 (8)0.0230 (7)0.0104 (6)0.0043 (6)0.0070 (6)
C410.0311 (8)0.0336 (8)0.0301 (8)0.0134 (6)0.0120 (6)0.0064 (6)
C510.0286 (7)0.0294 (8)0.0241 (7)0.0085 (6)0.0007 (6)0.0004 (6)
O1W0.0231 (5)0.0180 (5)0.0325 (6)0.0063 (4)0.0095 (4)−0.0005 (4)

Geometric parameters (Å, °)

O11—C11.2465 (15)N11—H110.89 (2)
O12—C11.2690 (15)N31—H310.890 (18)
O21—C21.4223 (14)C1—C21.5341 (16)
O31—C31.4293 (16)C2—C31.5375 (18)
O21—H220.87 (2)C3—C3i1.5303 (16)
O31—H320.83 (2)C2—H21.0000
O1W—H11W0.87 (3)C3—H31.0000
O1W—H12W0.86 (3)C41—C511.345 (2)
N11—C211.3249 (17)C21—H210.9500
N11—C511.367 (2)C41—H410.9500
N31—C211.3178 (19)C51—H510.9500
N31—C411.369 (2)
C2—O21—H22108.6 (11)O31—C3—C3i107.52 (10)
C3—O31—H32110.6 (13)O21—C2—H2108.00
H11W—O1W—H12W111 (2)C3—C2—H2108.00
C21—N11—C51108.65 (12)C1—C2—H2108.00
C21—N31—C41108.66 (11)O31—C3—H3109.00
C51—N11—H11125.3 (14)C2—C3—H3109.00
C21—N11—H11126.1 (14)C3i—C3—H3109.00
C41—N31—H31123.6 (14)N11—C21—N31108.63 (13)
C21—N31—H31127.7 (14)N31—C41—C51107.15 (13)
O12—C1—C2116.02 (10)N11—C51—C41106.92 (12)
O11—C1—O12124.82 (11)N31—C21—H21126.00
O11—C1—C2119.16 (10)N11—C21—H21126.00
O21—C2—C3111.32 (10)N31—C41—H41126.00
O21—C2—C1110.05 (9)C51—C41—H41126.00
C1—C2—C3110.45 (10)N11—C51—H51127.00
O31—C3—C2109.98 (9)C41—C51—H51127.00
C2—C3—C3i112.11 (10)
C21—N11—C51—C41−0.42 (16)C1—C2—C3—C3i−177.68 (10)
C51—N11—C21—N310.31 (16)C1—C2—C3—O3162.76 (12)
C21—N31—C41—C51−0.19 (16)O21—C2—C3—C3i59.76 (13)
C41—N31—C21—N11−0.08 (16)O31—C3—C3i—O31i179.98 (12)
O11—C1—C2—O215.67 (17)C2—C3—C3i—O31i59.01 (12)
O12—C1—C2—O21−174.06 (11)C2—C3—C3i—C2i−179.98 (12)
O12—C1—C2—C362.63 (14)O31—C3—C3i—C2i−59.01 (12)
O11—C1—C2—C3−117.63 (13)N31—C41—C51—N110.36 (16)
O21—C2—C3—O31−59.81 (13)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N11—H11···O210.89 (2)1.84 (2)2.7311 (15)175.9 (19)
N31—H31···O12ii0.890 (18)1.795 (19)2.6810 (14)174 (2)
O21—H22···O1W0.87 (2)1.76 (2)2.6324 (15)177 (2)
O31—H32···O12iii0.83 (2)1.89 (2)2.7104 (13)170.9 (16)
O1W—H11W···O11iv0.87 (3)1.82 (3)2.6799 (14)170.9 (18)
O1W—H12W···O31v0.86 (3)1.94 (3)2.7763 (15)164.4 (19)
C21—H21···O11vi0.952.323.0935 (17)138
C41—H41···O11vii0.952.423.2273 (18)142
C51—H51···O1Wviii0.952.343.2827 (18)173

Symmetry codes: (ii) x, y, z−1; (iii) −x+1, −y, −z+2; (iv) x, y+1, z; (v) x−1, y, z; (vi) −x, −y, −z+1; (vii) −x+1, −y, −z+1; (viii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5021).

References

  • Aakeröy, C. B. & Hitchcock, P. B. (1993). Chem. Mater.3, 1129–1135.
  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Benetollo, F., Bombieri, G., Liang, H., Liao, H., Shi, N. & Wu, J. (1993). J. Crystallogr. Spectrosc. Res.23, 171–175.
  • Bontchev, R. P. & Moore, R. C. (2005). Carbohydr. Res.340, 2195–2200. [PubMed]
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ferrier, F., Avezou, A., Terzian, G. & Benlian, D. (1998). J. Mol. Struct.442, 281–284.
  • Fukunaga, T. & Ishida, H. (2003). Acta Cryst. E59, o1869–o1871.
  • Fuller, J., Carlin, R. T., Simpson, L. J. & Furtak, T. E. (1995). Chem. Mater.7, 909–919.
  • James, M. N. G. & Matsushima, M. (1976). Acta Cryst. B32, 1708–1713.
  • Jeffrey, G. A. & Wood, R. A. (1982). Carbohydr. Res.18, 205–211.
  • MacDonald, J. C., Dorrestein, P. C. & Pilley, M. M. (2001). Cryst. Growth Des.1, 29–35.
  • O’Neil, M. J. (2001). The Merck Index, 13th ed., p. 769. Whitehouse Station, New Jersey: Merck & Co.
  • Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Trivedi, D. R., Ballabh, A. & Dastidar, P. (2003). CrystEngComm, 5, 358–367.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography