PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1067.
Published online 2010 August 11. doi:  10.1107/S1600536810030722
PMCID: PMC3008092

Bis(μ-pyridine-2,4-dicarboxyl­ato)-κ3 N,O 2:O 23 O 2:N,O 2-bis­[triaqua­magnesium(II)]

Abstract

In the title centrosymmetric MgII complex, [Mg2(C7H3NO4)2(H2O)6], each Mg cation is N,O-chelated by a pyridine-2,4-dicarboxyl­ate dianion and is coordinated by three water mol­ecules. A carboxyl­ate O atom from the neighboring pyridine-2,4-dicarboxyl­ate dianion bridges the Mg cation to complete the MgNO5 distorted octa­hedral coordination geometry. The dinuclear complex mol­ecules are linked by inter­molecular O—H(...)O hydrogen bonding, forming a three-dimensional supra­molecular structure.

Related literature

For the applications of Mg complexes, see: Davies et al. (2007 [triangle]); Dinca & Long (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1067-scheme1.jpg

Experimental

Crystal data

  • [Mg2(C7H3NO4)2(H2O)6]
  • M r = 486.92
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1067-efi1.jpg
  • a = 7.9221 (8) Å
  • b = 12.0951 (12) Å
  • c = 20.2989 (18) Å
  • V = 1945.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 293 K
  • 0.25 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.951, T max = 0.970
  • 8884 measured reflections
  • 1719 independent reflections
  • 1289 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.100
  • S = 1.06
  • 1719 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810030722/xu5007sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030722/xu5007Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Scientific Research Startup Fund of Liaocheng University (31805) and the Students Science and Technology Innovation Fund of Liaocheng University, China (SRT10060HX2).

supplementary crystallographic information

Comment

Magnesium(II) complexes have been extensively studied in recent year due to their wide application in synthesis of inorganic materials, catalysis of organic reactions and storage of hydrogen (Dinca & Long, 2005). In order to explore the relationship between these applications and their structures, a series of magnesium(II) complexes have been prepared and structural characterized (Davies et al., 2007). To expand research in this area, here we report a dinuclear magnesium(II) complex.

As shown in Fig.1, each magnesium(II) ion in the title complex is coordinated by two carboxyl O atoms, one pyridyl N atom and three water molecules, forming a distorted octahedral geometry (axial angle, O7—Mg1—O5 = 173.33 (9)°). Interestingly, the two adjacent magnesium(II) ions are linked by two µ2-carboxylate O atoms to form a dinuclear strucutre.

In the crystal strucutre, these dimeric molecules are linked by intermolecular O—H···O H-bonding interactions into a three-dimensional framework (Fig.2).

Experimental

A mixture of pyridine-2,4-dicarboxylic acid (16.7 mg, 0.10 mmol) and magnesium chloride hexahydrate (20.3 mg, 0.10 mmol) in 5 ml dimethyl acetamide (DMA) was heated to 373 K in a sealed 10 ml Teflon-lined reactor for 72 h. The mixture was allowed to cool to room temperature and the resulting block-shaped colorless crystals filtered from the reaction mixture. Yield, 72%.

Refinement

The H atoms on water were located in a difference Fourier map and refined in riding mode with the fixed Uiso(H) = 0.105 Å2. The aromatic H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The packing diagram of the title complex.

Crystal data

[Mg2(C7H3NO4)2(H2O)6]F(000) = 1008
Mr = 486.92Dx = 1.663 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2705 reflections
a = 7.9221 (8) Åθ = 3.2–26.8°
b = 12.0951 (12) ŵ = 0.21 mm1
c = 20.2989 (18) ÅT = 293 K
V = 1945.0 (3) Å3Block, colorless
Z = 40.25 × 0.18 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer1719 independent reflections
Radiation source: fine-focus sealed tube1289 reflections with I > 2σ(I)
graphiteRint = 0.042
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −5→9
Tmin = 0.951, Tmax = 0.970k = −14→14
8884 measured reflectionsl = −24→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0376P)2 + 1.7679P] where P = (Fo2 + 2Fc2)/3
1719 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mg10.07954 (11)0.60169 (7)0.04323 (3)0.0240 (2)
O1−0.0075 (2)0.43818 (14)0.05141 (7)0.0272 (4)
O2−0.0923 (4)0.30663 (19)0.12021 (10)0.0760 (9)
O3−0.0102 (4)0.3649 (2)0.35781 (9)0.0875 (11)
H6A0.11780.80680.07650.105*
H5B−0.18920.72460.08480.105*
H5A−0.23770.61930.08260.105*
H7A0.35030.5401−0.01940.105*
H7B0.40540.56000.04570.105*
H6B0.21740.80160.02110.105*
O40.1026 (2)0.51899 (15)0.39638 (8)0.0364 (5)
O5−0.1604 (2)0.66298 (14)0.06670 (8)0.0323 (5)
O60.1539 (3)0.76106 (16)0.04659 (9)0.0491 (6)
O70.3209 (2)0.56088 (17)0.01937 (8)0.0430 (5)
N10.1126 (3)0.56101 (17)0.14911 (9)0.0257 (5)
C1−0.0232 (4)0.3941 (2)0.10852 (11)0.0325 (6)
C20.0461 (3)0.4620 (2)0.16485 (11)0.0261 (6)
C30.0314 (3)0.4258 (2)0.22895 (11)0.0302 (6)
H3−0.01350.35640.23780.036*
C40.0838 (3)0.4934 (2)0.28011 (11)0.0281 (6)
C50.0576 (4)0.4556 (2)0.35037 (12)0.0361 (7)
C60.1530 (4)0.5952 (2)0.26430 (11)0.0318 (6)
H60.19020.64260.29730.038*
C70.1660 (4)0.6255 (2)0.19836 (11)0.0325 (6)
H70.21390.69350.18810.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mg10.0328 (5)0.0234 (5)0.0157 (4)−0.0004 (4)0.0015 (3)−0.0008 (3)
O10.0415 (11)0.0250 (10)0.0151 (8)0.0001 (8)−0.0028 (8)0.0000 (7)
O20.151 (3)0.0485 (15)0.0289 (11)−0.0543 (16)−0.0205 (13)0.0080 (10)
O30.176 (3)0.0627 (17)0.0241 (11)−0.0682 (19)0.0088 (14)0.0028 (10)
O40.0497 (12)0.0419 (12)0.0176 (8)−0.0064 (9)−0.0043 (8)−0.0016 (8)
O50.0379 (11)0.0271 (10)0.0320 (9)0.0057 (8)0.0049 (8)−0.0031 (8)
O60.0683 (15)0.0308 (11)0.0482 (12)−0.0158 (10)0.0282 (11)−0.0089 (9)
O70.0339 (11)0.0693 (15)0.0260 (9)0.0104 (10)−0.0014 (8)−0.0103 (9)
N10.0348 (13)0.0239 (12)0.0185 (10)−0.0021 (9)−0.0003 (9)0.0002 (8)
C10.0538 (18)0.0229 (14)0.0208 (13)−0.0060 (13)−0.0040 (12)−0.0003 (11)
C20.0327 (15)0.0238 (14)0.0220 (12)−0.0006 (11)−0.0008 (11)0.0010 (10)
C30.0445 (17)0.0256 (14)0.0205 (12)−0.0074 (12)−0.0023 (12)0.0028 (10)
C40.0349 (15)0.0301 (15)0.0194 (12)−0.0011 (12)−0.0010 (11)0.0007 (10)
C50.0526 (19)0.0362 (17)0.0193 (13)−0.0074 (14)−0.0014 (12)0.0027 (12)
C60.0449 (16)0.0308 (15)0.0196 (12)−0.0068 (13)−0.0052 (12)−0.0026 (10)
C70.0466 (17)0.0275 (15)0.0236 (13)−0.0102 (13)−0.0025 (12)0.0009 (11)

Geometric parameters (Å, °)

Mg1—N12.2202 (19)O7—H7A0.8581
Mg1—O12.1011 (19)O7—H7B0.8563
Mg1—O1i2.0613 (16)N1—C71.336 (3)
Mg1—O52.0953 (19)N1—C21.347 (3)
Mg1—O62.017 (2)C1—C21.511 (3)
Mg1—O72.033 (2)C2—C31.378 (3)
O1—C11.282 (3)C3—C41.385 (3)
O2—C11.215 (3)C3—H30.9300
O3—C51.231 (3)C4—C61.385 (4)
O4—C51.260 (3)C4—C51.512 (3)
O5—H5B0.8616C6—C71.392 (3)
O5—H5A0.8701C6—H60.9300
O6—H6A0.8688C7—H70.9300
O6—H6B0.8725
O6—Mg1—O788.02 (9)H6A—O6—H6B104.2
O6—Mg1—O1i109.63 (8)Mg1—O7—H7A123.0
O7—Mg1—O1i88.93 (7)Mg1—O7—H7B126.1
O6—Mg1—O585.36 (8)H7A—O7—H7B110.8
O7—Mg1—O5173.33 (9)C7—N1—C2117.7 (2)
O1i—Mg1—O592.50 (7)C7—N1—Mg1129.22 (17)
O6—Mg1—O1173.16 (8)C2—N1—Mg1112.37 (15)
O7—Mg1—O195.68 (8)O2—C1—O1125.6 (2)
O1i—Mg1—O176.26 (7)O2—C1—C2119.3 (2)
O5—Mg1—O190.98 (8)O1—C1—C2115.0 (2)
O6—Mg1—N198.32 (8)N1—C2—C3122.7 (2)
O7—Mg1—N193.77 (8)N1—C2—C1116.5 (2)
O1i—Mg1—N1152.00 (8)C3—C2—C1120.7 (2)
O5—Mg1—N188.02 (8)C2—C3—C4119.7 (2)
O1—Mg1—N175.74 (7)C2—C3—H3120.2
O6—Mg1—Mg1i148.06 (7)C4—C3—H3120.2
O7—Mg1—Mg1i92.97 (6)C6—C4—C3118.0 (2)
O1i—Mg1—Mg1i38.56 (5)C6—C4—C5122.8 (2)
O5—Mg1—Mg1i92.20 (6)C3—C4—C5119.2 (2)
O1—Mg1—Mg1i37.70 (4)O3—C5—O4125.1 (2)
N1—Mg1—Mg1i113.44 (7)O3—C5—C4116.5 (2)
C1—O1—Mg1i135.94 (16)O4—C5—C4118.4 (2)
C1—O1—Mg1119.66 (15)C4—C6—C7119.1 (2)
Mg1i—O1—Mg1103.74 (7)C4—C6—H6120.5
Mg1—O5—H5B130.0C7—C6—H6120.5
Mg1—O5—H5A120.5N1—C7—C6122.9 (2)
H5B—O5—H5A100.5N1—C7—H7118.6
Mg1—O6—H6A122.4C6—C7—H7118.6
Mg1—O6—H6B133.3

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O4ii0.871.802.668 (3)172.
O5—H5B···O2iii0.862.122.834 (3)140.
O6—H6A···O3iv0.871.732.576 (3)163.
O6—H6B···O5v0.872.072.880 (2)154.
O7—H7A···O4vi0.861.892.745 (2)174.
O7—H7B···O4vii0.862.022.857 (3)166.

Symmetry codes: (ii) x−1/2, y, −z+1/2; (iii) −x−1/2, y+1/2, z; (iv) −x, y+1/2, −z+1/2; (v) x+1/2, −y+3/2, −z; (vi) −x+1/2, −y+1, z−1/2; (vii) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5007).

References

  • Davies, R. P., Less, R. J., Lickiss, P. D. & White, A. J. P. (2007). Dalton Trans. pp. 2528–2535. [PubMed]
  • Dinca, M. & Long, J. R. (2005). J. Am. Chem. Soc.127, 9376–9377. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens. (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography