PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2325.
Published online 2010 August 18. doi:  10.1107/S1600536810032228
PMCID: PMC3008089

3-(4-Chloro­phenyl­sulfin­yl)-2,5,7-tri­methyl-1-benzofuran

Abstract

In the title compound, C17H15ClO2S, the O atom and the 4-chloro­phenyl group of the 4-chloro­phenyl­sulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment; the 4-chloro­phenyl ring is approximately perpendicular to this plane [dihedral angle = 87.12 (3)°]. In the crystal structure, mol­ecules are linked through a weak inter­molecular C—H(...)O hydrogen bond, and by weak C—S(...)π [3.394 (2) Å] and C—Cl(...)π [3.800 (2) Å] inter­actions.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006 [triangle]); Galal et al. (2009 [triangle]); Khan et al. (2005 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); Soekamto et al. (2003 [triangle]). For related structures, see: Choi et al. (2010a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2325-scheme1.jpg

Experimental

Crystal data

  • C17H15ClO2S
  • M r = 318.80
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2325-efi1.jpg
  • a = 6.0790 (12) Å
  • b = 10.2232 (19) Å
  • c = 12.514 (2) Å
  • α = 84.474 (9)°
  • β = 80.121 (9)°
  • γ = 85.991 (9)°
  • V = 761.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 173 K
  • 0.33 × 0.29 × 0.29 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.883, T max = 0.897
  • 13813 measured reflections
  • 3789 independent reflections
  • 3381 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.100
  • S = 1.06
  • 3789 reflections
  • 193 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032228/ng5016sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032228/ng5016Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Blue-Bio Industry RIC at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan city.

supplementary crystallographic information

Comment

A series of benzofuran ring system show remarkable pharmacological properties such as antimicrobial (Khan et al., 2005), antifungal (Aslam et al., 2006), antitumour and antiviral (Galal et al., 2009) activities. These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring is nearly perpendicular to the benzofuran plane with a dihedral angle of 87.12 (3)° and is tilted slightly towards it. The molecular packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the 4-chlorophenyl H atom and the oxygen of the S═O unit, with a C13—H13···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by a weak intermolecular C—S···π interaction between the sulfur and 4-chlorophenyl ring of an adjacent molecule, with a C1—S···Cg1ii [3.394 (2) Å] (Cg1 is the centroid of the C12–C17 4-chlorophenyl ring), and by an intermolecular C—Cl···π interaction between the chlorine and the benzene ring of a neighbouring benzofuran system, with a C15—Cl···Cg2iii [3.800 (2) Å] (Cg2 is the centroid of the C2–C7 benzene ring).

Experimental

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-2,5,7-trimethyl-1-benzofuran (303 mg, 1.0 mmol) in dichloromethane (40 ml) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 79%, m.p. 419–420 K; Rf = 0.69 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
C—H···O, C—S···π, and C—Cl···π interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denote the ring centroids. ...

Crystal data

C17H15ClO2SZ = 2
Mr = 318.80F(000) = 332
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0790 (12) ÅCell parameters from 8051 reflections
b = 10.2232 (19) Åθ = 2.5–28.5°
c = 12.514 (2) ŵ = 0.39 mm1
α = 84.474 (9)°T = 173 K
β = 80.121 (9)°Block, colourless
γ = 85.991 (9)°0.33 × 0.29 × 0.29 mm
V = 761.5 (3) Å3

Data collection

Bruker SMART APEXII CCD diffractometer3789 independent reflections
Radiation source: rotating anode3381 reflections with I > 2σ(I)
graphite multilayerRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 28.5°, θmin = 1.7°
[var phi] and ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −13→13
Tmin = 0.883, Tmax = 0.897l = −16→16
13813 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.100H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0527P)2 + 0.253P] where P = (Fo2 + 2Fc2)/3
3789 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.59001 (8)0.01403 (4)1.15921 (3)0.04476 (12)
S0.39442 (5)0.50713 (3)0.84174 (2)0.02515 (10)
O10.70564 (15)0.39917 (9)0.55824 (7)0.0275 (2)
O20.14556 (16)0.52738 (11)0.85326 (8)0.0345 (2)
C10.4919 (2)0.43493 (12)0.71941 (10)0.0238 (2)
C20.3922 (2)0.33367 (12)0.67424 (10)0.0233 (2)
C30.2051 (2)0.25904 (13)0.70614 (11)0.0268 (3)
H30.11120.26930.77210.032*
C40.1625 (2)0.16917 (13)0.63714 (12)0.0298 (3)
C50.3092 (3)0.15433 (13)0.53838 (12)0.0323 (3)
H50.27830.09280.49370.039*
C60.4978 (2)0.22683 (13)0.50407 (10)0.0299 (3)
C70.5302 (2)0.31615 (12)0.57516 (10)0.0249 (3)
C80.6769 (2)0.47050 (13)0.64733 (10)0.0255 (3)
C9−0.0407 (3)0.08820 (16)0.66938 (15)0.0409 (4)
H9A−0.00030.00650.70760.061*
H9B−0.09670.07070.60520.061*
H9C−0.15440.13590.71570.061*
C100.6554 (3)0.21158 (16)0.39876 (12)0.0418 (4)
H10A0.65530.29290.35350.063*
H10B0.60780.14320.36190.063*
H10C0.80370.18880.41370.063*
C110.8487 (2)0.56565 (14)0.64818 (12)0.0322 (3)
H11A0.79920.62220.70560.048*
H11B0.87230.61770.57950.048*
H11C0.98620.51890.66000.048*
C120.4487 (2)0.36497 (13)0.93215 (10)0.0238 (2)
C130.2739 (2)0.31452 (14)1.00741 (11)0.0284 (3)
H130.12970.35261.01040.034*
C140.3172 (2)0.20634 (15)1.07826 (12)0.0332 (3)
H140.20200.17081.12900.040*
C150.5339 (3)0.15185 (14)1.07258 (11)0.0307 (3)
C160.7104 (2)0.20486 (15)0.99957 (12)0.0328 (3)
H160.85510.16800.99760.039*
C170.6671 (2)0.31354 (14)0.92966 (11)0.0302 (3)
H170.78350.35180.88140.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0623 (3)0.0352 (2)0.0401 (2)−0.00630 (17)−0.02155 (19)0.00593 (15)
S0.02602 (17)0.02658 (17)0.02290 (16)0.00133 (12)−0.00348 (12)−0.00547 (11)
O10.0279 (5)0.0294 (5)0.0231 (4)−0.0013 (4)0.0010 (3)−0.0016 (3)
O20.0269 (5)0.0442 (6)0.0312 (5)0.0108 (4)−0.0041 (4)−0.0072 (4)
C10.0238 (6)0.0255 (6)0.0217 (6)0.0002 (5)−0.0033 (4)−0.0025 (4)
C20.0238 (6)0.0231 (6)0.0226 (6)0.0028 (4)−0.0047 (4)−0.0018 (4)
C30.0236 (6)0.0266 (6)0.0292 (6)0.0008 (5)−0.0024 (5)−0.0016 (5)
C40.0287 (6)0.0242 (6)0.0382 (7)0.0010 (5)−0.0121 (5)−0.0008 (5)
C50.0425 (8)0.0256 (6)0.0319 (7)0.0012 (5)−0.0144 (6)−0.0049 (5)
C60.0398 (7)0.0266 (6)0.0229 (6)0.0054 (5)−0.0071 (5)−0.0028 (5)
C70.0270 (6)0.0240 (6)0.0231 (6)0.0011 (5)−0.0038 (5)−0.0005 (4)
C80.0256 (6)0.0272 (6)0.0230 (6)0.0010 (5)−0.0040 (5)−0.0011 (5)
C90.0332 (7)0.0346 (8)0.0575 (10)−0.0058 (6)−0.0121 (7)−0.0059 (7)
C100.0617 (10)0.0356 (8)0.0258 (7)0.0021 (7)0.0004 (7)−0.0076 (6)
C110.0278 (6)0.0340 (7)0.0341 (7)−0.0053 (5)−0.0042 (5)0.0010 (5)
C120.0229 (6)0.0281 (6)0.0210 (6)−0.0017 (5)−0.0039 (4)−0.0044 (5)
C130.0215 (6)0.0352 (7)0.0285 (6)−0.0037 (5)−0.0023 (5)−0.0051 (5)
C140.0323 (7)0.0382 (8)0.0287 (7)−0.0107 (6)−0.0018 (5)−0.0009 (6)
C150.0396 (7)0.0290 (6)0.0261 (6)−0.0051 (5)−0.0120 (5)−0.0017 (5)
C160.0263 (6)0.0370 (7)0.0359 (7)0.0023 (5)−0.0091 (5)−0.0028 (6)
C170.0229 (6)0.0374 (7)0.0286 (7)−0.0006 (5)−0.0006 (5)−0.0009 (5)

Geometric parameters (Å, °)

Cl—C151.7443 (15)C9—H9A0.9600
S—O21.4964 (10)C9—H9B0.9600
S—C11.7563 (13)C9—H9C0.9600
S—C121.8015 (13)C10—H10A0.9600
O1—C81.3700 (16)C10—H10B0.9600
O1—C71.3846 (16)C10—H10C0.9600
C1—C81.3627 (17)C11—H11A0.9600
C1—C21.4408 (17)C11—H11B0.9600
C2—C71.3920 (17)C11—H11C0.9600
C2—C31.3937 (18)C12—C131.3863 (18)
C3—C41.3854 (19)C12—C171.3900 (18)
C3—H30.9300C13—C141.389 (2)
C4—C51.409 (2)C13—H130.9300
C4—C91.511 (2)C14—C151.387 (2)
C5—C61.392 (2)C14—H140.9300
C5—H50.9300C15—C161.389 (2)
C6—C71.3805 (18)C16—C171.386 (2)
C6—C101.5048 (19)C16—H160.9300
C8—C111.4780 (19)C17—H170.9300
O2—S—C1108.00 (6)H9A—C9—H9C109.5
O2—S—C12106.40 (6)H9B—C9—H9C109.5
C1—S—C1296.87 (6)C6—C10—H10A109.5
C8—O1—C7106.14 (10)C6—C10—H10B109.5
C8—C1—C2107.49 (11)H10A—C10—H10B109.5
C8—C1—S124.61 (10)C6—C10—H10C109.5
C2—C1—S127.86 (10)H10A—C10—H10C109.5
C7—C2—C3119.63 (12)H10B—C10—H10C109.5
C7—C2—C1104.61 (11)C8—C11—H11A109.5
C3—C2—C1135.75 (12)C8—C11—H11B109.5
C4—C3—C2118.34 (12)H11A—C11—H11B109.5
C4—C3—H3120.8C8—C11—H11C109.5
C2—C3—H3120.8H11A—C11—H11C109.5
C3—C4—C5119.66 (13)H11B—C11—H11C109.5
C3—C4—C9119.32 (13)C13—C12—C17121.40 (12)
C5—C4—C9121.02 (13)C13—C12—S119.24 (10)
C6—C5—C4123.56 (13)C17—C12—S119.23 (10)
C6—C5—H5118.2C12—C13—C14119.03 (12)
C4—C5—H5118.2C12—C13—H13120.5
C7—C6—C5114.29 (12)C14—C13—H13120.5
C7—C6—C10121.78 (14)C15—C14—C13119.40 (13)
C5—C6—C10123.92 (13)C15—C14—H14120.3
C6—C7—O1124.64 (12)C13—C14—H14120.3
C6—C7—C2124.50 (12)C14—C15—C16121.63 (13)
O1—C7—C2110.86 (11)C14—C15—Cl119.93 (11)
C1—C8—O1110.89 (11)C16—C15—Cl118.45 (11)
C1—C8—C11133.18 (12)C17—C16—C15118.88 (13)
O1—C8—C11115.91 (11)C17—C16—H16120.6
C4—C9—H9A109.5C15—C16—H16120.6
C4—C9—H9B109.5C16—C17—C12119.56 (13)
H9A—C9—H9B109.5C16—C17—H17120.2
C4—C9—H9C109.5C12—C17—H17120.2
O2—S—C1—C8137.22 (11)C1—C2—C7—C6179.56 (12)
C12—S—C1—C8−113.01 (12)C3—C2—C7—O1179.84 (11)
O2—S—C1—C2−40.20 (13)C1—C2—C7—O10.32 (14)
C12—S—C1—C269.57 (12)C2—C1—C8—O1−0.20 (14)
C8—C1—C2—C7−0.07 (14)S—C1—C8—O1−178.07 (9)
S—C1—C2—C7177.71 (10)C2—C1—C8—C11−178.62 (14)
C8—C1—C2—C3−179.47 (14)S—C1—C8—C113.5 (2)
S—C1—C2—C3−1.7 (2)C7—O1—C8—C10.40 (14)
C7—C2—C3—C4−0.10 (18)C7—O1—C8—C11179.11 (11)
C1—C2—C3—C4179.23 (13)O2—S—C12—C13−11.33 (12)
C2—C3—C4—C50.85 (19)C1—S—C12—C13−122.43 (11)
C2—C3—C4—C9−179.33 (12)O2—S—C12—C17172.79 (11)
C3—C4—C5—C6−0.7 (2)C1—S—C12—C1761.69 (12)
C9—C4—C5—C6179.49 (13)C17—C12—C13—C14−3.1 (2)
C4—C5—C6—C7−0.2 (2)S—C12—C13—C14−178.86 (10)
C4—C5—C6—C10179.96 (13)C12—C13—C14—C150.4 (2)
C5—C6—C7—O1−179.80 (12)C13—C14—C15—C161.7 (2)
C10—C6—C7—O10.0 (2)C13—C14—C15—Cl−178.75 (11)
C5—C6—C7—C21.05 (19)C14—C15—C16—C17−1.1 (2)
C10—C6—C7—C2−179.14 (13)Cl—C15—C16—C17179.36 (11)
C8—O1—C7—C6−179.69 (12)C15—C16—C17—C12−1.6 (2)
C8—O1—C7—C2−0.44 (14)C13—C12—C17—C163.7 (2)
C3—C2—C7—C6−0.92 (19)S—C12—C17—C16179.48 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.523.2548 (17)136.

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5016).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o543. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [PubMed]
  • Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography