PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2204.
Published online 2010 August 4. doi:  10.1107/S1600536810029971
PMCID: PMC3008079

2-Hydroxy-3-methoxybenzaldehyde 2,4-dinitrophenylhydrazone pyridine monosolvate

Abstract

The Schiff base molecule of the title compound, C14H12N4O6·C5H5N, was obtained from the condensation reaction of 2-hy­droxy-3-meth­oxy­benzaldehyde and 2,4-dinitro­phenyl­hydrazine. The C=N bond of the Schiff base has a trans arrangement and the dihedral angle between the two benzene rings is 3.49 (10)°. An intra­molecular N—H(...)O hydrogen bond generates an S(6) ring. In the crystal, O—H(...)O hydrogen bonds link the Schiff base mol­ecules.

Related literature

For background to Schiff bases, see: Kahwa et al. (1986 [triangle]); Santos et al. (2001 [triangle]). For a related structure, see: Ohba (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2204-scheme1.jpg

Experimental

Crystal data

  • C14H12N4O6·C5H5N
  • M r = 411.38
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2204-efi1.jpg
  • a = 6.9020 (18) Å
  • b = 7.6240 (12) Å
  • c = 19.073 (3) Å
  • α = 95.112 (13)°
  • β = 91.199 (17)°
  • γ = 107.024 (19)°
  • V = 954.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.21 × 0.19 × 0.17 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.973, T max = 0.978
  • 7517 measured reflections
  • 4401 independent reflections
  • 1852 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.143
  • S = 0.82
  • 4401 reflections
  • 271 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810029971/hb5577sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029971/hb5577Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our in the study of the coordination chemistry of Schiff bases, we synthesized the title compound, (I), and determined its crystal structure.

The molecular structure of (I) is shown in Fig.1. The benzene ring and the 2,4-dinitro benzene ring are nearly coplanar, making a dihedral angle of 3.49 (10)°. The dinitro group is coplanar with C9-benzene ring with a dihedral angle of 0.58 (8). Bond lengths and bond angles agree with those of other dinitrophenylhydrazone derivatives (Ohba, 1996).

Intramolecular N—H···O and intermolecular O—H···O hydrogen bonds are certainly responsible for the planar conformation of the molecule.

Experimental

2,4-Dinitrophenylhydrazine (1 mmol, 0.198 g) was dissolved in anhydrous ethanol (15 ml), H2SO4(98%, 0.5 ml) was then added and the mixture was stirred for several minitutes at 351 K. Then, 2-hydroxy-3-methoxybenzaldehyde (1 mmol, 0.152 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 3 h. The product was isolated and recrystallized from pyridine, red blocks of (I) were obtained after two weeks.

Refinement

All H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.96 Å(methyl) and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(CH, CH2 or NH) and Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
: The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bond is indicatd with dashed lines.
Fig. 2.
The partial packing of (I).

Crystal data

C14H12N4O6·C5H5NZ = 2
Mr = 411.38F(000) = 418
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9020 (18) ÅCell parameters from 1741 reflections
b = 7.6240 (12) Åθ = 3.2–29.3°
c = 19.073 (3) ŵ = 0.11 mm1
α = 95.112 (13)°T = 293 K
β = 91.199 (17)°Block, red
γ = 107.024 (19)°0.21 × 0.19 × 0.17 mm
V = 954.7 (3) Å3

Data collection

Bruker SMART CCD diffractometer4401 independent reflections
Radiation source: fine-focus sealed tube1852 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 29.3°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −8→9
Tmin = 0.973, Tmax = 0.978k = −10→8
7517 measured reflectionsl = −23→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.82w = 1/[σ2(Fo2) + (0.078P)2] where P = (Fo2 + 2Fc2)/3
4401 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.7466 (3)0.0112 (2)0.01896 (10)0.0424 (5)
N30.6500 (3)−0.4948 (2)−0.11703 (12)0.0485 (5)
O10.7209 (2)0.00916 (18)0.23110 (8)0.0549 (5)
H1B0.6315−0.06900.20690.082*
C10.7623 (3)0.1767 (3)0.13134 (12)0.0390 (5)
N20.7090 (3)−0.1535 (2)−0.02176 (10)0.0429 (5)
H2A0.6742−0.2561−0.00300.051*
C20.7567 (3)0.1720 (3)0.20412 (13)0.0412 (6)
O30.6370 (3)−0.5111 (2)−0.05341 (11)0.0677 (5)
C120.7671 (3)−0.1328 (3)−0.23637 (12)0.0386 (5)
O20.7845 (3)0.3159 (2)0.31832 (9)0.0670 (5)
C80.7250 (3)0.0051 (3)0.08483 (13)0.0399 (5)
H8A0.6856−0.10800.10350.048*
C100.7001 (3)−0.3115 (2)−0.13946 (12)0.0367 (5)
C30.7921 (3)0.3370 (3)0.24820 (13)0.0476 (6)
C60.8044 (3)0.3474 (3)0.10356 (13)0.0477 (6)
H6A0.81020.35260.05510.057*
C140.7760 (3)0.0185 (3)−0.12116 (12)0.0400 (5)
H14A0.79520.1268−0.09180.048*
C110.7186 (3)−0.3009 (3)−0.21097 (12)0.0399 (6)
H11A0.6983−0.4075−0.24150.048*
O40.6221 (3)−0.6271 (2)−0.16096 (10)0.0679 (6)
N40.7912 (3)−0.1221 (3)−0.31121 (11)0.0534 (5)
C50.8368 (3)0.5061 (3)0.14741 (15)0.0549 (7)
H5A0.86340.61840.12840.066*
C130.7946 (3)0.0271 (3)−0.19136 (12)0.0407 (6)
H13A0.82610.1407−0.20960.049*
O50.8451 (3)0.0308 (2)−0.33278 (10)0.0713 (6)
C90.7280 (3)−0.1511 (3)−0.09170 (12)0.0354 (5)
C40.8307 (3)0.5021 (3)0.21998 (15)0.0533 (7)
H4A0.85280.61110.24930.064*
O60.7599 (3)−0.2658 (3)−0.35043 (10)0.0813 (6)
C180.3624 (4)0.0818 (3)−0.36369 (12)0.0432 (6)
H18A0.33440.0297−0.32140.052*
C70.8415 (5)0.4749 (4)0.36657 (16)0.0861 (10)
H7A0.82920.43980.41380.129*
H7B0.75460.55000.35880.129*
H7C0.97960.54350.36010.129*
N50.2789 (4)0.0847 (4)−0.48479 (16)0.0962 (9)
C190.2479 (4)0.0124 (4)−0.42066 (17)0.0663 (8)
H19A0.1386−0.0923−0.41790.080*
C170.5183 (5)0.2274 (4)−0.36801 (16)0.0732 (9)
H17A0.60120.2766−0.32770.088*
C150.4455 (5)0.2404 (4)−0.48748 (17)0.0736 (8)
H15A0.47360.2948−0.52930.088*
C160.5660 (5)0.3114 (4)−0.42861 (18)0.0760 (9)
H16A0.67830.4146−0.42930.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0478 (11)0.0423 (10)0.0358 (13)0.0098 (8)0.0002 (9)0.0099 (9)
N30.0542 (13)0.0366 (11)0.0584 (16)0.0161 (9)0.0098 (11)0.0130 (11)
O10.0749 (11)0.0411 (9)0.0432 (11)0.0083 (7)−0.0017 (9)0.0069 (7)
C10.0306 (11)0.0417 (12)0.0435 (16)0.0081 (9)−0.0015 (10)0.0074 (10)
N20.0563 (12)0.0342 (9)0.0379 (12)0.0107 (8)0.0036 (10)0.0109 (8)
C20.0362 (12)0.0440 (12)0.0425 (16)0.0099 (9)−0.0003 (11)0.0060 (11)
O30.1054 (15)0.0491 (10)0.0544 (14)0.0253 (9)0.0186 (11)0.0247 (9)
C120.0393 (12)0.0444 (12)0.0343 (14)0.0142 (9)0.0037 (10)0.0097 (10)
O20.0895 (13)0.0634 (10)0.0400 (12)0.0122 (9)0.0021 (10)−0.0021 (9)
C80.0380 (13)0.0438 (12)0.0390 (15)0.0116 (9)−0.0002 (11)0.0123 (10)
C100.0346 (12)0.0317 (11)0.0448 (15)0.0093 (9)0.0043 (10)0.0104 (10)
C30.0421 (13)0.0523 (14)0.0452 (17)0.0094 (10)0.0008 (12)0.0036 (12)
C60.0434 (13)0.0469 (13)0.0480 (16)0.0039 (10)−0.0011 (12)0.0123 (11)
C140.0472 (13)0.0343 (11)0.0377 (15)0.0100 (9)0.0037 (11)0.0070 (10)
C110.0398 (13)0.0358 (11)0.0430 (16)0.0102 (9)0.0029 (11)0.0016 (10)
O40.0970 (14)0.0336 (9)0.0729 (14)0.0187 (9)0.0124 (11)0.0037 (9)
N40.0635 (14)0.0614 (13)0.0397 (14)0.0235 (11)0.0074 (10)0.0110 (11)
C50.0510 (15)0.0418 (13)0.069 (2)0.0058 (11)0.0002 (13)0.0178 (12)
C130.0457 (13)0.0338 (11)0.0427 (15)0.0083 (9)0.0071 (11)0.0150 (10)
O50.1020 (15)0.0721 (12)0.0476 (13)0.0311 (10)0.0184 (10)0.0256 (9)
C90.0302 (11)0.0384 (11)0.0376 (15)0.0082 (9)0.0039 (10)0.0101 (10)
C40.0508 (15)0.0434 (13)0.060 (2)0.0067 (11)−0.0025 (13)−0.0023 (12)
O60.1247 (17)0.0754 (12)0.0429 (12)0.0308 (11)0.0063 (11)−0.0032 (10)
C180.0617 (15)0.0504 (13)0.0200 (13)0.0172 (12)0.0036 (11)0.0137 (10)
C70.115 (3)0.084 (2)0.053 (2)0.0256 (18)0.0025 (18)−0.0192 (16)
N50.102 (2)0.120 (2)0.080 (2)0.0501 (18)0.0147 (17)0.0221 (18)
C190.0695 (19)0.0749 (17)0.058 (2)0.0208 (14)0.0169 (16)0.0237 (15)
C170.099 (2)0.0744 (19)0.054 (2)0.0404 (17)−0.0206 (18)0.0007 (16)
C150.084 (2)0.0792 (19)0.067 (2)0.0295 (17)0.0219 (18)0.0330 (17)
C160.081 (2)0.0683 (17)0.079 (3)0.0186 (15)−0.0033 (19)0.0186 (17)

Geometric parameters (Å, °)

N1—C81.272 (3)C14—C131.353 (3)
N1—N21.369 (2)C14—C91.408 (3)
N3—O41.219 (2)C14—H14A0.9300
N3—O31.233 (2)C11—H11A0.9300
N3—C101.444 (3)N4—O51.227 (2)
O1—C21.344 (2)N4—O61.231 (2)
O1—H1B0.8200C5—C41.388 (4)
C1—C21.393 (3)C5—H5A0.9300
C1—C61.402 (3)C13—H13A0.9300
C1—C81.467 (3)C4—H4A0.9300
N2—C91.344 (3)C18—C191.305 (3)
N2—H2A0.8600C18—C171.310 (3)
C2—C31.405 (3)C18—H18A0.9300
C12—C111.362 (3)C7—H7A0.9600
C12—C131.389 (3)C7—H7B0.9600
C12—N41.447 (3)C7—H7C0.9600
O2—C31.362 (3)N5—C191.381 (4)
O2—C71.407 (3)N5—C151.396 (4)
C8—H8A0.9300C19—H19A0.9300
C10—C111.380 (3)C17—C161.371 (4)
C10—C91.421 (3)C17—H17A0.9300
C3—C41.370 (3)C15—C161.354 (4)
C6—C51.366 (3)C15—H15A0.9300
C6—H6A0.9300C16—H16A0.9300
C8—N1—N2117.18 (18)O5—N4—C12118.34 (19)
O4—N3—O3122.35 (19)O6—N4—C12119.0 (2)
O4—N3—C10119.5 (2)C6—C5—C4121.0 (2)
O3—N3—C10118.15 (19)C6—C5—H5A119.5
C2—O1—H1B109.5C4—C5—H5A119.5
C2—C1—C6119.0 (2)C14—C13—C12120.38 (19)
C2—C1—C8120.1 (2)C14—C13—H13A119.8
C6—C1—C8120.8 (2)C12—C13—H13A119.8
C9—N2—N1118.40 (17)N2—C9—C14119.45 (18)
C9—N2—H2A120.8N2—C9—C10124.01 (19)
N1—N2—H2A120.8C14—C9—C10116.5 (2)
O1—C2—C1119.27 (19)C3—C4—C5119.7 (2)
O1—C2—C3121.0 (2)C3—C4—H4A120.2
C1—C2—C3119.7 (2)C5—C4—H4A120.2
C11—C12—C13120.8 (2)C19—C18—C17117.8 (3)
C11—C12—N4119.12 (19)C19—C18—H18A121.1
C13—C12—N4120.05 (19)C17—C18—H18A121.1
C3—O2—C7118.4 (2)O2—C7—H7A109.5
N1—C8—C1119.9 (2)O2—C7—H7B109.5
N1—C8—H8A120.1H7A—C7—H7B109.5
C1—C8—H8A120.1O2—C7—H7C109.5
C11—C10—C9121.50 (19)H7A—C7—H7C109.5
C11—C10—N3115.69 (19)H7B—C7—H7C109.5
C9—C10—N3122.8 (2)C19—N5—C15116.6 (3)
O2—C3—C4125.1 (2)C18—C19—N5124.1 (3)
O2—C3—C2114.6 (2)C18—C19—H19A118.0
C4—C3—C2120.4 (2)N5—C19—H19A118.0
C5—C6—C1120.3 (2)C18—C17—C16123.7 (3)
C5—C6—H6A119.9C18—C17—H17A118.1
C1—C6—H6A119.9C16—C17—H17A118.1
C13—C14—C9121.41 (19)C16—C15—N5119.4 (3)
C13—C14—H14A119.3C16—C15—H15A120.3
C9—C14—H14A119.3N5—C15—H15A120.3
C12—C11—C10119.34 (19)C15—C16—C17118.3 (3)
C12—C11—H11A120.3C15—C16—H16A120.8
C10—C11—H11A120.3C17—C16—H16A120.8
O5—N4—O6122.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···O4i0.822.533.319 (2)162.
N2—H2A···O30.862.032.635 (2)126.

Symmetry codes: (i) −x+1, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5577).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  • Ohba, S. (1996). Acta Cryst. C52, 2118–2119.
  • Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography