PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1172–m1173.
Published online 2010 August 28. doi:  10.1107/S1600536810034021
PMCID: PMC3008078

catena-Poly[[{2-[(2-hy­droxy­eth­yl)imino­meth­yl]-6-meth­oxy­phenolato}copper(II)]-μ-thio­cyanato]

Abstract

In the title thio­cyanate-bridged polynuclear copper(II) complex, [Cu(C10H12NO3)(NCS)]n, the Cu atom is five-coordinated in a square-pyramidal geometry, with one phenolato O, one imino N and one hy­droxy O atom of a Schiff base ligand and one thio­cyanato N atom defining the basal plane, and with one thio­cyanato S atom occupying the apical position. In the crystal structure, pairs of adjacent complex mol­ecules are linked through inter­molecular O—H(...)O hydrogen bonds into dimers. The dimers are further linked via Cu(...)S inter­actions, forming two-dimensional layers parallel to the bc plane.

Related literature

For the biological properties of Schiff bases, see: Bhandari et al. (2008 [triangle]); Sinha et al. (2008 [triangle]); Sondhi et al. (2006 [triangle]); Singh et al. (2006 [triangle]). For metal complexes with Schiff bases, see: Assey et al. (2010 [triangle]); Thiam et al. (2010 [triangle]); Montazerozohori et al. (2009 [triangle]); Eltayeb et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1172-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H12NO3)(NCS)]
  • M r = 315.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1172-efi1.jpg
  • a = 10.123 (2) Å
  • b = 11.812 (2) Å
  • c = 10.264 (2) Å
  • β = 94.122 (2)°
  • V = 1224.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.96 mm−1
  • T = 298 K
  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.662, T max = 0.696
  • 6414 measured reflections
  • 2602 independent reflections
  • 1875 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.097
  • S = 1.04
  • 2602 reflections
  • 167 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034021/om2356sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034021/om2356Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Top-Class Foundation and the Applied Chemistry Key Laboratory Foundation of Pingdingshan University for support.

supplementary crystallographic information

Comment

Schiff bases are a kind of versatile compounds, which possess excellent biological properties (Bhandari et al., 2008; Sinha et al., 2008; Sondhi et al., 2006; Singh et al., 2006). The metal complexes derived from Schiff bases have been extensively studied (Assey et al., 2010; Thiam et al., 2010; Montazerozohori et al., 2009; Eltayeb et al., 2009). In this paper, a new thiocyanato-bridged polynuclear copper(II) complex with the Schiff base 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol is reported.

The complex is a thiocyanato-bridged polynuclear copper(II) complex, as shown in Fig. 1. The Cu atom in the complex is five-coordinate in a square pyramidal geometry, with one phenolate O, one imine N, and one hydroxy O atoms of a Schiff base ligand, and with one thiocyanate N atom, occupying the basal plane, and with one thiocyanate S atom occupying the apical position. The Cu···S' (S' at x, 1/2 - y, 1/2 + z) distance is 2.983 (3) Å. The Cu atom displaced 0.141 (2) Å from the plane defined by the four basal donor atoms. The slight distortion of the square pyramidal coordination can be observed from the coordinate bond lengths and angles (Table 1).

In the crystal structure, the adjacent complex molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2), to form a dimer. The dimers are further linked via Cu···S interactions, forming a two-dimensional layers parallel to the bc plane (Fig. 2).

Experimental

3-Methoxysalicylaldehyde (152.1 mg, 1.0 mmol), 2-aminoethanol (61.1 mg, 1.0 mmol), ammonium thiocyanate (76.0 mg, 1.0 mmol), and copper acetate monohydrate (199.2 mg, 1.0 mmol) were dissolved in methanol (80 ml). The mixture was stirred for two hours at room temperature. The resulting solution was left in air for a few days, yielding blue block-like crystals.

Refinement

H2 was located in a difference Fourier map and refined isotropically, with O—H distance restrained to 0.85 (1) Å, and with Uiso(H) fixed at 0.08 Å2. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(C10).

Figures

Fig. 1.
The structure of the title complex with 30% probability displacement ellipsoids.
Fig. 2.
The molecular packing of the title complex. Intermolecular hydrogen bonds are shown as dashed lines. H atoms unrelated to the hydrogen bonding have been omitted for clarity.

Crystal data

[Cu(C10H12NO3)(NCS)]F(000) = 644
Mr = 315.83Dx = 1.714 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.123 (2) ÅCell parameters from 1160 reflections
b = 11.812 (2) Åθ = 2.5–24.5°
c = 10.264 (2) ŵ = 1.96 mm1
β = 94.122 (2)°T = 298 K
V = 1224.1 (4) Å3Block, blue
Z = 40.23 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer2602 independent reflections
Radiation source: fine-focus sealed tube1875 reflections with I > 2σ(I)
graphiteRint = 0.043
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.662, Tmax = 0.696k = −15→9
6414 measured reflectionsl = −10→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0374P)2 + 0.2873P] where P = (Fo2 + 2Fc2)/3
2602 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.53293 (4)0.44688 (4)0.14711 (4)0.03113 (16)
N10.5018 (3)0.5378 (2)0.2957 (3)0.0287 (7)
N20.5887 (3)0.3555 (3)0.0048 (3)0.0347 (8)
O10.3542 (2)0.3978 (2)0.1187 (2)0.0313 (6)
O20.6958 (2)0.5474 (2)0.1426 (3)0.0369 (7)
O30.1241 (2)0.3292 (2)0.0317 (3)0.0502 (8)
S10.69266 (9)0.20646 (9)−0.17233 (10)0.0367 (3)
C10.2666 (3)0.5001 (3)0.2971 (4)0.0299 (9)
C20.2552 (3)0.4302 (3)0.1865 (4)0.0282 (8)
C30.1256 (4)0.3941 (3)0.1410 (4)0.0356 (9)
C40.0163 (4)0.4253 (4)0.2056 (4)0.0467 (11)
H4−0.06760.40130.17460.056*
C50.0312 (4)0.4923 (4)0.3164 (5)0.0512 (12)
H5−0.04280.51200.36020.061*
C60.1528 (4)0.5294 (4)0.3616 (4)0.0423 (11)
H60.16130.57470.43580.051*
C70.3894 (4)0.5518 (3)0.3442 (3)0.0308 (9)
H70.38740.59950.41610.037*
C80.6186 (4)0.6025 (3)0.3450 (4)0.0353 (10)
H8A0.67770.55500.39970.042*
H8B0.59220.66650.39640.042*
C90.6868 (4)0.6430 (3)0.2283 (4)0.0394 (10)
H9A0.63620.70340.18440.047*
H9B0.77440.67140.25510.047*
C10−0.0026 (4)0.2961 (4)−0.0268 (5)0.0643 (15)
H10A−0.04770.25090.03380.096*
H10B0.00910.2528−0.10430.096*
H10C−0.05420.3624−0.04920.096*
C110.6318 (3)0.2926 (3)−0.0683 (4)0.0265 (8)
H20.701 (5)0.568 (4)0.0643 (18)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0286 (2)0.0349 (3)0.0305 (3)−0.0015 (2)0.00595 (18)−0.0093 (2)
N10.0324 (16)0.0280 (19)0.0260 (17)0.0028 (13)0.0036 (13)−0.0012 (14)
N20.0380 (17)0.038 (2)0.0291 (19)0.0019 (15)0.0067 (14)−0.0066 (16)
O10.0285 (13)0.0328 (15)0.0335 (16)−0.0030 (11)0.0085 (11)−0.0096 (12)
O20.0373 (14)0.0396 (18)0.0348 (16)−0.0047 (12)0.0100 (13)−0.0066 (15)
O30.0379 (15)0.060 (2)0.052 (2)−0.0168 (14)0.0020 (13)−0.0150 (17)
S10.0390 (5)0.0337 (6)0.0376 (6)0.0032 (4)0.0050 (4)−0.0110 (5)
C10.0325 (19)0.030 (2)0.028 (2)0.0055 (16)0.0064 (16)0.0026 (18)
C20.0301 (18)0.024 (2)0.032 (2)−0.0017 (16)0.0092 (16)0.0061 (17)
C30.038 (2)0.033 (2)0.035 (2)−0.0047 (18)0.0054 (18)0.005 (2)
C40.031 (2)0.060 (3)0.050 (3)−0.004 (2)0.0109 (19)0.008 (2)
C50.039 (2)0.067 (3)0.051 (3)0.008 (2)0.026 (2)0.008 (3)
C60.045 (2)0.048 (3)0.036 (2)0.011 (2)0.0183 (19)0.002 (2)
C70.043 (2)0.028 (2)0.022 (2)0.0052 (17)0.0034 (16)−0.0042 (18)
C80.037 (2)0.034 (2)0.035 (2)−0.0026 (17)−0.0045 (17)−0.0041 (19)
C90.038 (2)0.037 (3)0.042 (3)−0.0071 (18)−0.0020 (18)0.000 (2)
C100.050 (3)0.067 (3)0.075 (4)−0.029 (2)−0.008 (2)−0.005 (3)
C110.0287 (18)0.028 (2)0.022 (2)−0.0040 (16)−0.0017 (15)0.0055 (18)

Geometric parameters (Å, °)

Cu1—O11.902 (2)C2—C31.426 (5)
Cu1—N11.910 (3)C3—C41.380 (5)
Cu1—N21.933 (3)C4—C51.385 (6)
Cu1—O22.035 (3)C4—H40.9300
Cu1—S1i2.983 (3)C5—C61.357 (6)
N1—C71.285 (4)C5—H50.9300
N1—C81.467 (4)C6—H60.9300
N2—C111.164 (4)C7—H70.9300
O1—C21.317 (4)C8—C91.502 (5)
O2—C91.439 (5)C8—H8A0.9700
O2—H20.846 (10)C8—H8B0.9700
O3—C31.357 (5)C9—H9A0.9700
O3—C101.431 (4)C9—H9B0.9700
S1—C111.627 (4)C10—H10A0.9600
C1—C21.401 (5)C10—H10B0.9600
C1—C61.413 (5)C10—H10C0.9600
C1—C71.438 (5)
O1—Cu1—N194.82 (11)C5—C4—H4119.9
O1—Cu1—N292.31 (11)C6—C5—C4120.5 (4)
N1—Cu1—N2172.47 (12)C6—C5—H5119.7
O1—Cu1—O2159.63 (11)C4—C5—H5119.7
N1—Cu1—O282.55 (12)C5—C6—C1120.7 (4)
N2—Cu1—O291.59 (12)C5—C6—H6119.6
O1—Cu1—S1i112.18 (12)C1—C6—H6119.6
O2—Cu1—S1i87.96 (12)N1—C7—C1125.7 (3)
N1—Cu1—S1i87.62 (12)N1—C7—H7117.1
N2—Cu1—S1i87.45 (12)C1—C7—H7117.1
C7—N1—C8120.9 (3)N1—C8—C9107.2 (3)
C7—N1—Cu1125.7 (3)N1—C8—H8A110.3
C8—N1—Cu1113.2 (2)C9—C8—H8A110.3
C11—N2—Cu1171.1 (3)N1—C8—H8B110.3
C2—O1—Cu1125.6 (2)C9—C8—H8B110.3
C9—O2—Cu1110.9 (2)H8A—C8—H8B108.5
C9—O2—H2111 (3)O2—C9—C8106.9 (3)
Cu1—O2—H2107 (3)O2—C9—H9A110.3
C3—O3—C10117.2 (3)C8—C9—H9A110.3
C2—C1—C6120.1 (3)O2—C9—H9B110.3
C2—C1—C7122.8 (3)C8—C9—H9B110.3
C6—C1—C7116.9 (4)H9A—C9—H9B108.6
O1—C2—C1125.3 (3)O3—C10—H10A109.5
O1—C2—C3117.2 (3)O3—C10—H10B109.5
C1—C2—C3117.5 (3)H10A—C10—H10B109.5
O3—C3—C4125.9 (4)O3—C10—H10C109.5
O3—C3—C2113.3 (3)H10A—C10—H10C109.5
C4—C3—C2120.9 (4)H10B—C10—H10C109.5
C3—C4—C5120.2 (4)N2—C11—S1179.0 (4)
C3—C4—H4119.9

Symmetry codes: (i) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1ii0.85 (1)1.96 (2)2.770 (4)160 (5)
O2—H2···O3ii0.85 (1)2.41 (4)3.020 (4)129 (4)

Symmetry codes: (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2356).

References

  • Assey, G., Butcher, R. J., Gultneh, Y. & Yisgedu, T. (2010). Acta Cryst. E66, m711–m712. [PMC free article] [PubMed]
  • Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem.16, 1822–1831. [PubMed]
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, m1692–m1693. [PMC free article] [PubMed]
  • Montazerozohori, M., Habibi, M. H., Amirnasr, M., Ariyoshi, K. & Suzuki, T. (2009). Acta Cryst. E65, m617. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem.41, 147–153. [PubMed]
  • Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem.43, 160–165. [PubMed]
  • Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem.14, 3758–3765. [PubMed]
  • Thiam, I. E., Retailleau, P., Navaza, A. & Gaye, M. (2010). Acta Cryst. E66, m136. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography