PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2312–o2313.
Published online 2010 August 18. doi:  10.1107/S1600536810031685
PMCID: PMC3008076

5,8-Dimeth­oxy-2-phenyl-1,4-dihydro­quinoline-3-carbonitrile

Abstract

The crystal structure of the title mol­ecule, C18H16N2O2, can be described as two types of crossed layers parallel to the (110) and (An external file that holds a picture, illustration, etc.
Object name is e-66-o2312-efi1.jpg10) planes. An intra­molecular N—H(...)O hydrogen bond occurs.

Related literature

For our previous work on the preparation of quinoline derivatives see: Benzerka et al. (2008 [triangle]); Ladraa et al. (2009 [triangle], 2010 [triangle]); Moussaoui et al. (2002 [triangle]); Menasra et al. (2005 [triangle]); Belfaitah et al. (2006 [triangle]); Bouraiou et al. (2006 [triangle], 2007 [triangle], 2008 [triangle]). For more details of quinoline reduction, see: Dauphinee & Forrest (1978 [triangle]); Srikrishna et al. (1996 [triangle]); Vierhapper & Eliel (1975 [triangle]); Lim et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2312-scheme1.jpg

Experimental

Crystal data

  • C18H16N2O2
  • M r = 292.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2312-efi2.jpg
  • a = 3.9952 (3) Å
  • b = 20.4544 (15) Å
  • c = 17.7313 (13) Å
  • β = 95.976 (5)°
  • V = 1441.12 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 150 K
  • 0.27 × 0.07 × 0.05 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS: Sheldrick, 2002 [triangle]) T min = 0.702, T max = 0.996
  • 12491 measured reflections
  • 3292 independent reflections
  • 1975 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.133
  • S = 1.03
  • 3292 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg & Berndt, 2001 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810031685/hg2695sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031685/hg2695Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to all personel of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algérie for their assistance.

supplementary crystallographic information

Comment

In quinoline and its derivatives it is usually the pyridine ring which is reduced first. Sodium in liquid ammonia converted quinoline to 1,2-dihydroquinoline (Dauphinee et al., 1978). 1,2,3,4-tetrahydroquinoline was obtained by catalytic hydrogenation and by reduction with borane and sodium cyanoborohydride (Srikrishna et al., 1996), 5,6,7,8-tetrhydroquinoline by catalytic hydrogenation over platinum oxide or 5% palladium or rhodium on carbon in triflouroacetic acid (Vierhapper et al., 1975). Vigorous hydrogenation gave cis and trans-decahydroquinoline. The reducing proprieties of hydrazine are due to its thermal decomposition to hydrogen and nitrogen. The heating of hydrazine with aromatic hydrocarbons at 160–280°C effected complete hydrogenation of the aromatic ring. On the other hand, zinc is used to a limited extent for reductions of double bonds conjugated with strongly polar groups and partial reduction of some aromatics. The majority of reductions with zinc are carried out in acids: hydrochloric, sulfuric, formic and especially acetic. In previous works, we were interested in the design and synthesis of new molecules that contain a quinolyl moiety (Benzerka et al., 2008; Ladraa et al., 2009, 2010, Moussaoui et al., 2002; Menasra et al., 2005; Belfaitah et al., 2006 and Bouraiou et al.,2006, 2007, 2008). In this paper, we report the structure determination of new compound that result from an unwanted reduction of the pyridine ring of 3-cyano-5,8-dimethoxy-2-phenylquinoline. Our attempt to create a tetrazine ring linked quinolyl moiety, using hydrazine in the presence of Cu(NO3)2.3H2O-Zn, was failed and led to 1,4-dihydro-5,8-dimethoxy-2-phenylquinoline-3-carbonitrile (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of title compound contains a 1,4-dihydroquinolyl unit bearing a phenyl ring at position C-2, nitril group at C-3 and two methoxy at C-5 and C-8. The two rings of 1,4-dihydroquinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.17 (5)°. The phenyl ring form also with quinolyl plane a dihedral angle of 45.38 (6)°. The crystal packing can be described by two types of crossed layers which 1,4-dihydroquinolyl ring is parallel to (110) and (-110)planes respectively (Fig. 2). The crystal packing is stabilized by intramolecular hydrogen bond (N—H···O) and Van der Waals interactions, resulting in the formation of a three-dimensional network and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in table 1.

Experimental

Compound (I) was obtained by modification of reported procedure (Lim et al., 1995). Refluxing a mixture of 1 eq. of 3-cyano-5,8-dimethoxy-2-phenylquinoline, 2 eq. of zinc and 1 eq. of Cu(NO2)2. 3H2O in the presence of 4 eq. of hydrazine monohydrate for 3 days lead to the corresponding 1,4-dihydro-5,8-dimethoxy-2-phenylquinoline-3-carbonitrile I. The product was purified by column chromatography. Single crystals suitable for X-ray diffraction analysis were obtained by dissolving the corresponding compound in CH2Cl2/Petroleum ether mixture and letting the solution for slow evaporation at room temperature.

Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom.

Figures

Fig. 1.
(Farrugia, 1997) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
Fig. 2.
(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the c axis.

Crystal data

C18H16N2O2F(000) = 616
Mr = 292.33Dx = 1.347 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2693 reflections
a = 3.9952 (3) Åθ = 2.3–25.3°
b = 20.4544 (15) ŵ = 0.09 mm1
c = 17.7313 (13) ÅT = 150 K
β = 95.976 (5)°Stick, colourless
V = 1441.12 (18) Å30.27 × 0.07 × 0.05 mm
Z = 4

Data collection

Bruker APEXII diffractometer1975 reflections with I > 2σ(I)
graphiteRint = 0.051
CCD rotation images, thin slices scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan (SADABS: Sheldrick, 2002)h = −3→5
Tmin = 0.702, Tmax = 0.996k = −26→24
12491 measured reflectionsl = −22→22
3292 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0462P)2 + 0.6371P] where P = (Fo2 + 2Fc2)/3
3292 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1215 (5)0.13620 (9)0.66975 (11)0.0267 (5)
C20.0694 (5)0.18185 (9)0.72449 (11)0.0252 (4)
C30.2040 (5)0.17402 (10)0.80517 (11)0.0302 (5)
H3A0.01480.17630.83700.036*
H3B0.35730.21100.81980.036*
C40.3890 (5)0.11164 (9)0.82153 (11)0.0258 (4)
C50.5299 (5)0.09642 (10)0.89555 (11)0.0280 (5)
C60.7054 (5)0.03884 (10)0.91013 (12)0.0329 (5)
H60.79930.02890.96030.040*
C70.7448 (5)−0.00496 (10)0.85068 (12)0.0329 (5)
H70.8668−0.04440.86090.040*
C80.6090 (5)0.00849 (9)0.77773 (11)0.0282 (5)
C100.8195 (6)−0.09023 (10)0.72813 (14)0.0402 (6)
H10A1.0483−0.08070.75090.060*
H10B0.8296−0.11300.67980.060*
H10C0.7053−0.11800.76260.060*
C110.6472 (6)0.13355 (11)1.02389 (11)0.0377 (5)
H11A0.56990.09261.04500.056*
H11B0.59630.17011.05660.056*
H11C0.89060.13131.02110.056*
C12−0.1237 (5)0.23988 (10)0.70655 (11)0.0273 (5)
C130.0034 (5)0.14369 (9)0.58792 (11)0.0268 (4)
C140.0519 (5)0.20237 (10)0.55075 (11)0.0319 (5)
H140.16070.23780.57790.038*
C15−0.0572 (6)0.20951 (11)0.47439 (12)0.0383 (6)
H15−0.02320.24980.44960.046*
C16−0.2153 (6)0.15839 (12)0.43412 (13)0.0419 (6)
H16−0.29280.16370.38200.050*
C17−0.2606 (6)0.09925 (12)0.46989 (12)0.0409 (6)
H17−0.36700.06390.44210.049*
C18−0.1503 (5)0.09145 (11)0.54663 (12)0.0347 (5)
H18−0.17940.05070.57090.042*
C90.4271 (5)0.06718 (9)0.76313 (11)0.0265 (4)
N10.2916 (4)0.07985 (8)0.68900 (9)0.0294 (4)
H10.31660.05060.65360.035*
N2−0.2790 (5)0.28731 (9)0.69710 (10)0.0370 (5)
O10.6360 (4)−0.02995 (7)0.71508 (8)0.0351 (4)
O20.4784 (4)0.14325 (7)0.94924 (8)0.0337 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0277 (11)0.0253 (11)0.0271 (11)−0.0058 (8)0.0032 (8)0.0022 (8)
C20.0292 (11)0.0213 (10)0.0250 (10)−0.0039 (8)0.0028 (8)0.0011 (8)
C30.0297 (11)0.0285 (11)0.0324 (11)−0.0049 (9)0.0028 (9)0.0070 (9)
C40.0272 (11)0.0220 (10)0.0287 (11)−0.0034 (8)0.0052 (8)0.0045 (8)
C50.0298 (11)0.0280 (11)0.0262 (11)−0.0047 (8)0.0029 (8)0.0023 (8)
C60.0361 (13)0.0304 (12)0.0318 (12)−0.0007 (9)0.0007 (9)0.0089 (9)
C70.0331 (12)0.0252 (11)0.0407 (13)0.0033 (9)0.0047 (9)0.0083 (9)
C80.0294 (11)0.0226 (10)0.0335 (11)−0.0027 (8)0.0070 (8)0.0023 (8)
C100.0401 (14)0.0264 (12)0.0548 (15)0.0061 (10)0.0088 (11)−0.0030 (10)
C110.0463 (14)0.0409 (13)0.0245 (11)−0.0055 (10)−0.0022 (9)0.0027 (9)
C120.0341 (12)0.0240 (11)0.0240 (10)−0.0047 (9)0.0044 (8)−0.0027 (8)
C130.0271 (11)0.0275 (11)0.0258 (11)0.0017 (8)0.0033 (8)−0.0019 (8)
C140.0389 (13)0.0288 (11)0.0287 (11)0.0025 (9)0.0061 (9)0.0010 (9)
C150.0514 (15)0.0366 (13)0.0279 (12)0.0090 (11)0.0092 (10)0.0048 (9)
C160.0462 (15)0.0560 (16)0.0233 (11)0.0130 (12)0.0022 (10)−0.0021 (10)
C170.0403 (14)0.0482 (15)0.0332 (12)0.0000 (11)−0.0009 (10)−0.0140 (11)
C180.0380 (13)0.0311 (12)0.0347 (12)−0.0034 (9)0.0030 (9)−0.0031 (9)
C90.0262 (11)0.0225 (10)0.0309 (11)−0.0038 (8)0.0043 (8)0.0050 (8)
N10.0406 (11)0.0229 (9)0.0246 (9)0.0000 (7)0.0025 (7)0.0010 (7)
N20.0475 (12)0.0287 (10)0.0348 (10)0.0044 (9)0.0045 (8)−0.0014 (8)
O10.0422 (9)0.0258 (8)0.0378 (9)0.0044 (6)0.0071 (7)−0.0003 (6)
O20.0436 (9)0.0320 (8)0.0244 (8)0.0003 (6)−0.0019 (6)0.0000 (6)

Geometric parameters (Å, °)

C1—N11.363 (3)C10—H10B0.9800
C1—C21.378 (3)C10—H10C0.9800
C1—C131.486 (3)C11—O21.435 (2)
C2—C121.433 (3)C11—H11A0.9800
C2—C31.484 (3)C11—H11B0.9800
C3—C41.488 (3)C11—H11C0.9800
C3—H3A0.9900C12—N21.154 (3)
C3—H3B0.9900C13—C141.393 (3)
C4—C91.398 (3)C13—C181.400 (3)
C4—C51.408 (3)C14—C151.386 (3)
C5—O21.381 (2)C14—H140.9500
C5—C61.381 (3)C15—C161.381 (3)
C6—C71.405 (3)C15—H150.9500
C6—H60.9500C16—C171.386 (3)
C7—C81.377 (3)C16—H160.9500
C7—H70.9500C17—C181.395 (3)
C8—O11.374 (2)C17—H170.9500
C8—C91.413 (3)C18—H180.9500
C10—O11.441 (2)C9—N11.393 (2)
C10—H10A0.9800N1—H10.8800
N1—C1—C2120.29 (17)O2—C11—H11A109.5
N1—C1—C13115.53 (17)O2—C11—H11B109.5
C2—C1—C13124.18 (18)H11A—C11—H11B109.5
C1—C2—C12121.48 (17)O2—C11—H11C109.5
C1—C2—C3122.67 (18)H11A—C11—H11C109.5
C12—C2—C3115.85 (17)H11B—C11—H11C109.5
C2—C3—C4113.79 (17)N2—C12—C2175.5 (2)
C2—C3—H3A108.8C14—C13—C18119.03 (19)
C4—C3—H3A108.8C14—C13—C1120.34 (17)
C2—C3—H3B108.8C18—C13—C1120.61 (18)
C4—C3—H3B108.8C15—C14—C13120.5 (2)
H3A—C3—H3B107.7C15—C14—H14119.7
C9—C4—C5118.87 (18)C13—C14—H14119.7
C9—C4—C3120.23 (17)C16—C15—C14120.4 (2)
C5—C4—C3120.90 (18)C16—C15—H15119.8
O2—C5—C6124.87 (17)C14—C15—H15119.8
O2—C5—C4114.55 (17)C15—C16—C17119.9 (2)
C6—C5—C4120.58 (19)C15—C16—H16120.1
C5—C6—C7119.86 (19)C17—C16—H16120.1
C5—C6—H6120.1C16—C17—C18120.2 (2)
C7—C6—H6120.1C16—C17—H17119.9
C8—C7—C6120.88 (19)C18—C17—H17119.9
C8—C7—H7119.6C17—C18—C13120.0 (2)
C6—C7—H7119.6C17—C18—H18120.0
O1—C8—C7126.04 (18)C13—C18—H18120.0
O1—C8—C9114.84 (17)N1—C9—C4121.09 (17)
C7—C8—C9119.11 (19)N1—C9—C8118.22 (18)
O1—C10—H10A109.5C4—C9—C8120.68 (18)
O1—C10—H10B109.5C1—N1—C9121.88 (17)
H10A—C10—H10B109.5C1—N1—H1119.1
O1—C10—H10C109.5C9—N1—H1119.1
H10A—C10—H10C109.5C8—O1—C10116.18 (16)
H10B—C10—H10C109.5C5—O2—C11116.77 (16)
N1—C1—C2—C12−176.67 (19)C13—C14—C15—C16−0.1 (3)
C13—C1—C2—C123.5 (3)C14—C15—C16—C17−1.0 (3)
N1—C1—C2—C32.6 (3)C15—C16—C17—C180.7 (3)
C13—C1—C2—C3−177.25 (19)C16—C17—C18—C130.7 (3)
C1—C2—C3—C4−2.0 (3)C14—C13—C18—C17−1.8 (3)
C12—C2—C3—C4177.34 (17)C1—C13—C18—C17179.85 (19)
C2—C3—C4—C90.9 (3)C5—C4—C9—N1179.80 (18)
C2—C3—C4—C5−179.41 (18)C3—C4—C9—N1−0.5 (3)
C9—C4—C5—O2−179.88 (16)C5—C4—C9—C8−1.2 (3)
C3—C4—C5—O20.4 (3)C3—C4—C9—C8178.53 (19)
C9—C4—C5—C60.6 (3)O1—C8—C9—N10.9 (3)
C3—C4—C5—C6−179.07 (19)C7—C8—C9—N1−179.98 (18)
O2—C5—C6—C7−179.32 (19)O1—C8—C9—C4−178.15 (17)
C4—C5—C6—C70.1 (3)C7—C8—C9—C41.0 (3)
C5—C6—C7—C8−0.3 (3)C2—C1—N1—C9−2.1 (3)
C6—C7—C8—O1178.81 (19)C13—C1—N1—C9177.77 (17)
C6—C7—C8—C9−0.2 (3)C4—C9—N1—C11.1 (3)
N1—C1—C13—C14−133.8 (2)C8—C9—N1—C1−178.01 (18)
C2—C1—C13—C1446.0 (3)C7—C8—O1—C101.1 (3)
N1—C1—C13—C1844.5 (3)C9—C8—O1—C10−179.86 (18)
C2—C1—C13—C18−135.6 (2)C6—C5—O2—C116.0 (3)
C18—C13—C14—C151.5 (3)C4—C5—O2—C11−173.46 (18)
C1—C13—C14—C15179.86 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.882.292.649 (2)104

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2695).

References

  • Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357.
  • Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090. [PMC free article] [PubMed]
  • Bouraiou, A., Belfaitah, A., Bouacida, S., Benard-Rocherulle, P. & Carboni, B. (2007). Acta Cryst. E63, o1626–o1628.
  • Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem.45, 329–333.
  • Bouraiou, A., Menasra, H., Debache, A., Rhouati, S. & Belfaitah, A. (2006). J. Soc. Alger. Chim.16, 171–183.
  • Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  • Bruker (2001). APEXII and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Dauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem.56, 632–634.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478. [PubMed]
  • Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693. [PMC free article] [PubMed]
  • Lim, C. L., Pyo, S. H., Kim, T. Y., Yim, E. S. & Han, B. H. (1995). Bull. Korean Chem. Soc.16, 374–377.
  • Menasra, H., Kedjadja, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun.35, 2779–2788.
  • Moussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim.12, 71–78.
  • Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Srikrishna, A., Reddy, T. J. & Viswajanani, R. (1996). Tetrahedron, 52, 1631–1636.
  • Vierhapper, F. W. & Eliel, E. L. (1975). J. Org. Chem.40, 2729–2734.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography