PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2469.
Published online 2010 August 28. doi:  10.1107/S1600536810032915
PMCID: PMC3008073

3,5-Bis(4-hy­droxy­phen­yl)-4H-1,2,4-triazol-4-amine monohydrate

Abstract

The triazole ring in the title compound, C14H12N4O2·H2O, makes dihedral angles of 36.9 (1) and 37.3 (1)° with the two benzene rings. Each hy­droxy group is a hydrogen-bond donor to a two-coordinate N atom of an adjacent mol­ecule; these O—H(...)N hydrogen bonds generate a layer parallel to the ab plane. Adjacent layers are linked by N—-H(...)O and Owater—H(...)O hydrogen bonds into a three-dimensional network.

Related literature

For two modifications of 4-amino-3,5-diphenyl-1,2,4-triazole, see: Ikemi et al. (2002 [triangle]); Zhang et al. (2009 [triangle]). For comparison structures, see: Wang et al. (2006 [triangle]); Zachara et al. (2004 [triangle]); Bentiss et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2469-scheme1.jpg

Experimental

Crystal data

  • C14H12N4O2·H2O
  • M r = 286.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2469-efi1.jpg
  • a = 10.6659 (5) Å
  • b = 15.9790 (8) Å
  • c = 7.4632 (4) Å
  • V = 1271.96 (11) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.90 mm−1
  • T = 100 K
  • 0.30 × 0.10 × 0.05 mm

Data collection

  • Oxford Diffraction Gemini E diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010 [triangle]) T min = 0.773, T max = 0.956
  • 2460 measured reflections
  • 1275 independent reflections
  • 1172 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.097
  • S = 1.05
  • 1275 reflections
  • 215 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032915/bt5326sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032915/bt5326Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Ministry of Science, Technology and Innovation (grant No. 04–01–04-SF0144), Universiti Pertanian Malaysia and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The class of 3,5-bis(n-hydroxyphenyl)-4-amino-1,2,4-triazoles represents a class of efficient corrosion inhibitors that are synthesized from n-hydroxybenzonitrile, hydrazine and hydrazine sulfate. The pure product is obtained in a number of steps that involve acidification/basification followed by recrystallization, as exemplified by 3,5-bis(4-hydroxyphenyl)-4-amino-1,2,4-triazole (Bentiss et al., 1998). The compound can be synthesized, more conveniently, though a microwave route. The compound is, in fact, a monohydrate (Scheme I, Fig. 1).

Experimental

4-Hydroxybenzonitrile (3 mmol), hydrazine dihydrochloride (1 mmol) and anhydrous hydrazine (3 mmol) along with n-butanol (3 ml) were placed in a microwave synthesizer tube. The tube was irradiated in a CEM Discovery Synthesizer. The magnetron was set to 'normal' and the temperature to 403 K. The tube was irradiated for 8 minutes. Water (10 ml) was added to dissolve the contents. The solution was set aside for the growth of the faint-yellow crystals, which separated after 3 days.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints [N–H 0.86 + 0.01 Å and O–H 0.84 + 0.01 Å]; their displacement parameters were freely refined. For the water molecule, the H···H distance was restrained to 1.37±0.01 Å. 402 Friedel pairs were merged.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of C14H12N4O2.H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C14H12N4O2·H2OF(000) = 600
Mr = 286.29Dx = 1.495 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2acCell parameters from 1690 reflections
a = 10.6659 (5) Åθ = 4.1–70.4°
b = 15.9790 (8) ŵ = 0.90 mm1
c = 7.4632 (4) ÅT = 100 K
V = 1271.96 (11) Å3Prism, yellow
Z = 40.30 × 0.10 × 0.05 mm

Data collection

Oxford Diffraction Gemini E diffractometer1275 independent reflections
Radiation source: fine-focus sealed tube1172 reflections with I > 2σ(I)
graphiteRint = 0.019
Detector resolution: 16.1952 pixels mm-1θmax = 70.0°, θmin = 5.0°
ω scansh = −11→12
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)k = −14→19
Tmin = 0.773, Tmax = 0.956l = −9→8
2460 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097w = 1/[σ2(Fo2) + (0.0762P)2 + 0.0334P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1275 reflectionsΔρmax = 0.23 e Å3
215 parametersΔρmin = −0.24 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.05710 (16)1.15554 (10)0.5001 (3)0.0257 (5)
O21.07428 (16)0.33922 (9)0.5626 (3)0.0252 (4)
O1W0.8047 (2)0.76244 (13)0.3567 (3)0.0375 (5)
C11.0874 (2)1.07317 (13)0.5123 (3)0.0175 (5)
C21.0093 (2)1.01053 (14)0.4426 (3)0.0184 (5)
H20.93351.02540.38390.022*
C31.0424 (2)0.92705 (14)0.4592 (3)0.0175 (5)
H30.98860.88480.41350.021*
C41.1546 (2)0.90481 (12)0.5428 (3)0.0157 (5)
C51.2323 (2)0.96757 (13)0.6105 (3)0.0166 (5)
H51.30870.95280.66760.020*
C61.1993 (2)1.05105 (13)0.5954 (4)0.0173 (5)
H61.25311.09320.64180.021*
C71.19711 (19)0.81723 (13)0.5495 (4)0.0165 (5)
C81.20070 (19)0.68071 (13)0.5660 (3)0.0154 (5)
C91.1602 (2)0.59292 (12)0.5747 (3)0.0156 (5)
C101.0488 (2)0.56628 (14)0.4941 (3)0.0166 (5)
H100.99280.60630.44440.020*
C111.0195 (2)0.48188 (13)0.4864 (3)0.0177 (5)
H11A0.94480.46400.42880.021*
C121.0998 (2)0.42316 (13)0.5633 (4)0.0176 (5)
C131.2108 (2)0.44890 (13)0.6442 (3)0.0187 (5)
H131.26580.40890.69600.022*
C141.2406 (2)0.53350 (13)0.6487 (3)0.0165 (5)
H141.31670.55110.70290.020*
N10.9975 (2)0.74477 (11)0.6363 (4)0.0212 (5)
N21.1228 (2)0.74854 (9)0.5740 (3)0.0161 (5)
N31.31389 (18)0.79302 (10)0.5291 (3)0.0185 (5)
N41.31642 (18)0.70604 (10)0.5380 (3)0.0188 (5)
H1O0.9790 (11)1.161 (2)0.508 (5)0.042 (10)*
H2O0.9976 (14)0.331 (3)0.542 (7)0.082 (16)*
H110.827 (3)0.7358 (19)0.264 (3)0.053 (12)*
H120.7286 (15)0.7500 (18)0.376 (6)0.072 (17)*
H1N0.945 (3)0.7523 (17)0.549 (4)0.046 (11)*
H2N0.987 (4)0.7803 (18)0.722 (4)0.055 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0173 (8)0.0142 (7)0.0455 (13)0.0051 (6)0.0026 (8)0.0015 (8)
O20.0207 (8)0.0137 (7)0.0412 (12)−0.0040 (6)−0.0055 (9)0.0015 (8)
O1W0.0296 (11)0.0460 (11)0.0368 (13)−0.0008 (9)0.0020 (9)−0.0085 (11)
C10.0144 (11)0.0154 (10)0.0226 (14)0.0001 (8)0.0072 (10)0.0021 (9)
C20.0144 (10)0.0202 (11)0.0207 (13)0.0038 (8)−0.0007 (9)0.0006 (10)
C30.0147 (11)0.0166 (10)0.0212 (13)−0.0018 (8)0.0015 (9)−0.0003 (9)
C40.0166 (10)0.0124 (10)0.0181 (11)0.0013 (8)0.0030 (10)−0.0009 (9)
C50.0129 (10)0.0187 (10)0.0182 (12)−0.0002 (8)0.0013 (9)0.0012 (9)
C60.0147 (10)0.0144 (10)0.0229 (14)−0.0039 (8)0.0033 (9)−0.0023 (10)
C70.0154 (10)0.0154 (10)0.0186 (13)−0.0014 (8)0.0011 (10)−0.0010 (10)
C80.0149 (10)0.0148 (10)0.0164 (12)0.0001 (8)0.0006 (10)0.0001 (10)
C90.0157 (10)0.0133 (10)0.0177 (12)−0.0008 (8)0.0025 (10)−0.0002 (9)
C100.0136 (11)0.0170 (10)0.0192 (13)0.0021 (8)0.0014 (9)0.0010 (9)
C110.0159 (10)0.0185 (12)0.0187 (12)−0.0021 (8)0.0010 (10)−0.0004 (10)
C120.0158 (11)0.0142 (9)0.0229 (12)−0.0018 (8)0.0026 (10)−0.0037 (10)
C130.0168 (11)0.0166 (11)0.0225 (14)0.0019 (8)0.0006 (10)0.0038 (9)
C140.0114 (9)0.0197 (9)0.0184 (13)−0.0007 (9)0.0004 (9)−0.0018 (9)
N10.0135 (11)0.0214 (10)0.0288 (12)−0.0006 (7)0.0036 (10)−0.0013 (9)
N20.0129 (9)0.0121 (9)0.0234 (11)−0.0013 (6)0.0015 (9)0.0002 (7)
N30.0144 (9)0.0118 (9)0.0294 (13)−0.0011 (6)−0.0004 (8)0.0010 (9)
N40.0148 (9)0.0108 (9)0.0307 (13)−0.0007 (6)0.0001 (9)−0.0008 (9)

Geometric parameters (Å, °)

O1—C11.359 (3)C7—N21.366 (3)
O1—H1O0.84 (3)C8—N41.316 (3)
O2—C121.369 (2)C8—N21.367 (3)
O2—H2O0.84 (3)C8—C91.469 (3)
O1w—H110.85 (3)C9—C141.393 (3)
O1w—H120.85 (3)C9—C101.399 (3)
C1—C61.391 (3)C10—C111.385 (3)
C1—C21.402 (3)C10—H100.9500
C2—C31.386 (3)C11—C121.393 (3)
C2—H20.9500C11—H11A0.9500
C3—C41.395 (3)C12—C131.392 (3)
C3—H30.9500C13—C141.389 (3)
C4—C51.396 (3)C13—H130.9500
C4—C71.472 (3)C14—H140.9500
C5—C61.384 (3)N1—N21.416 (3)
C5—H50.9500N1—H1N0.87 (3)
C6—H60.9500N1—H2N0.86 (3)
C7—N31.313 (3)N3—N41.392 (3)
C1—O1—H1O109 (2)C14—C9—C10119.06 (19)
C12—O2—H2O110 (3)C14—C9—C8119.2 (2)
H11—O1W—H12106.8 (17)C10—C9—C8121.4 (2)
O1—C1—C6118.7 (2)C11—C10—C9120.4 (2)
O1—C1—C2121.7 (2)C11—C10—H10119.8
C6—C1—C2119.60 (19)C9—C10—H10119.8
C3—C2—C1120.2 (2)C10—C11—C12120.0 (2)
C3—C2—H2119.9C10—C11—H11A120.0
C1—C2—H2119.9C12—C11—H11A120.0
C2—C3—C4120.2 (2)O2—C12—C13117.4 (2)
C2—C3—H3119.9O2—C12—C11122.4 (2)
C4—C3—H3119.9C13—C12—C11120.15 (19)
C3—C4—C5119.21 (19)C14—C13—C12119.5 (2)
C3—C4—C7121.4 (2)C14—C13—H13120.2
C5—C4—C7119.2 (2)C12—C13—H13120.2
C6—C5—C4120.8 (2)C13—C14—C9120.9 (2)
C6—C5—H5119.6C13—C14—H14119.6
C4—C5—H5119.6C9—C14—H14119.6
C5—C6—C1119.9 (2)N2—N1—H1N111 (3)
C5—C6—H6120.0N2—N1—H2N110 (3)
C1—C6—H6120.0H1N—N1—H2N112 (3)
N3—C7—N2109.22 (19)C7—N2—C8106.2 (2)
N3—C7—C4124.7 (2)C7—N2—N1128.73 (17)
N2—C7—C4126.12 (19)C8—N2—N1123.65 (17)
N4—C8—N2109.47 (19)C7—N3—N4107.88 (16)
N4—C8—C9125.19 (19)C8—N4—N3107.25 (16)
N2—C8—C9125.21 (19)
O1—C1—C2—C3−179.3 (2)C10—C11—C12—O2178.7 (2)
C6—C1—C2—C31.1 (4)C10—C11—C12—C13−1.5 (4)
C1—C2—C3—C4−1.0 (4)O2—C12—C13—C14−179.8 (2)
C2—C3—C4—C50.5 (4)C11—C12—C13—C140.4 (4)
C2—C3—C4—C7−175.0 (2)C12—C13—C14—C90.6 (4)
C3—C4—C5—C60.0 (4)C10—C9—C14—C13−0.4 (3)
C7—C4—C5—C6175.5 (2)C8—C9—C14—C13−174.0 (2)
C4—C5—C6—C10.1 (4)N3—C7—N2—C8−0.5 (3)
O1—C1—C6—C5179.7 (2)C4—C7—N2—C8178.4 (2)
C2—C1—C6—C5−0.6 (3)N3—C7—N2—N1166.0 (2)
C3—C4—C7—N3140.3 (3)C4—C7—N2—N1−15.2 (4)
C5—C4—C7—N3−35.2 (4)N4—C8—N2—C7−0.1 (3)
C3—C4—C7—N2−38.4 (4)C9—C8—N2—C7−176.1 (2)
C5—C4—C7—N2146.2 (3)N4—C8—N2—N1−167.4 (2)
N4—C8—C9—C1434.9 (4)C9—C8—N2—N116.6 (4)
N2—C8—C9—C14−149.7 (2)N2—C7—N3—N40.8 (3)
N4—C8—C9—C10−138.5 (3)C4—C7—N3—N4−178.0 (2)
N2—C8—C9—C1036.9 (4)N2—C8—N4—N30.5 (3)
C14—C9—C10—C11−0.7 (4)C9—C8—N4—N3176.6 (2)
C8—C9—C10—C11172.7 (2)C7—N3—N4—C8−0.8 (2)
C9—C10—C11—C121.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1o···N3i0.84 (3)1.92 (3)2.730 (2)163 (3)
O2—H2o···N4ii0.84 (3)2.02 (3)2.850 (2)168 (4)
O1w—H11···O2iii0.85 (3)2.19 (3)3.020 (3)166 (4)
O1w—H12···O1i0.85 (3)2.55 (3)3.137 (3)128 (2)
N1—H1n···O1w0.87 (3)2.08 (3)2.943 (4)173 (4)
N1—H2n···O1iv0.86 (3)2.36 (3)3.202 (4)164 (3)

Symmetry codes: (i) x−1/2, −y+2, z; (ii) x−1/2, −y+1, z; (iii) −x+2, −y+1, z−1/2; (iv) −x+2, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5326).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bentiss, F., Lagrenee, M., Traisnel, M., Mernari, B. & Elattari, H. (1998). J. Appl. Electrochem.29, 1073–1078.
  • Ikemi, Y., Hayashi, N., Kakehi, A. & Matsumoto, K. (2002). Heterocycl. Commun.8, 439–442.
  • Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, P., Ma, J. P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2791–o2792.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Zachara, J., Madura, I. & Włostowski, M. (2004). Acta Cryst. C60, o57–o59. [PubMed]
  • Zhang, Y.-W., Wang, J.-Q. & Cheng, L. (2009). Acta Cryst. E65, o2261. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography