PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2246–o2247.
Published online 2010 August 11. doi:  10.1107/S1600536810030916
PMCID: PMC3008071

2-Amino-5-bromo­pyridinium 6-oxo-1,6-dihydro­pyridine-2-carboxyl­ate monohydrate

Abstract

In the crystal structure of the title salt, C5H6BrN2 +·C6H4NO3 ·H2O, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H(...)O hydrogen bonds, forming an R 2 2(8) ring motif. The ion pairs are further connected via O—H(...)O, N—H(...)O, N—H(...)Br and C—H(...)O hydrogen bonds, forming a two-dimensional network parallel to the bc plane. The water mol­ecules self-assemble through O—H(...)O hydrogen bonds, forming one-dimensional supra­molecular chains along the a axis, with graph-set notation C 2 2(4).

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]). For details of 6-hy­droxy­picolinic acid, see: Sun et al. (2004 [triangle]); Soares-Santos et al. (2003 [triangle]). For a related structure, see: Sawada & Ohashi (1998 [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2246-scheme1.jpg

Experimental

Crystal data

  • C5H6BrN2 +·C6H4NO3 ·H2O
  • M r = 330.15
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2246-efi1.jpg
  • a = 3.8616 (1) Å
  • b = 15.8227 (2) Å
  • c = 20.8961 (3) Å
  • V = 1276.77 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.23 mm−1
  • T = 296 K
  • 0.35 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.400, T max = 0.694
  • 8884 measured reflections
  • 3718 independent reflections
  • 3105 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.097
  • S = 1.09
  • 3718 reflections
  • 172 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.32 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1482 Friedel pairs
  • Flack parameter: 0.011 (12)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030916/is2585sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030916/is2585Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 6-hydroxypioclinic acid has interesting characteristics: firstly, it was characterized by a similar enol-keto tautomerism due to the labile hydrogen atom of -OH group in α-position migrating easily to the basic pyridine N atom; secondly, the multiple coordination sites such as the carbonyl oxygen, the amide nitrogen and carboxylate oxygen atoms are able to coordinate with various metal ions (Sun et al., 2004; Soares-Santos et al., 2003). In order to study some interesting hydrogen bonding interactions of these compounds, the synthesis and structure of the title salt is presented here.

The asymmetric unit, (Fig. 1), contains a 2-amino-5-bromopyridinium cation, a 6-oxo-1,6-dihydropyridine-2-carboxylate anion and a water molecule. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.019 (3) Å for atom N1. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [C1—N1—C5 = 122.7 (3)°] is subtented at the protonated N1 atom. The anion exists in the keto-enol tautomerism of the -CONH moiety. Similar form is also observed in the crystal structure of 2-oxo-1,2-dihydropyridine-6-carboxylic acid (Sawada & Ohashi, 1998).

In the crystal packing, (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intermolecular N—H···O hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via O—H···O, N—H···O, N—H···Br and C—H···O (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the bc plane. The water molecules self-assemble through O1W—H2W···O1W hydrogen bonds, forming one-dimensional supramolecular chains along the a axis, with graph-set notation C22(4) (Fig. 3).

Experimental

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (86 mg, Aldrich) and 6-hydroxypicolinic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

All hydrogen atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.9404–0.9428 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C, N, O). 1482 Friedel pairs were used to determine the absolute configuration.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of (I), showing hydrogen-bonded (dashed lines) 2D networks parallel to the bc-plane. H atoms not involved in the intermolecular interactions have been omitted for clarity.
Fig. 3.
One-dimensional supramolecular chain made up of water molecules.

Crystal data

C5H6BrN2+·C6H4NO3·H2OF(000) = 664
Mr = 330.15Dx = 1.718 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4297 reflections
a = 3.8616 (1) Åθ = 2.6–27.5°
b = 15.8227 (2) ŵ = 3.23 mm1
c = 20.8961 (3) ÅT = 296 K
V = 1276.77 (4) Å3Block, colourless
Z = 40.35 × 0.18 × 0.12 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3718 independent reflections
Radiation source: fine-focus sealed tube3105 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −5→5
Tmin = 0.400, Tmax = 0.694k = −22→19
8884 measured reflectionsl = −20→29

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.097w = 1/[σ2(Fo2) + (0.036P)2 + 0.5546P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3718 reflectionsΔρmax = 0.37 e Å3
172 parametersΔρmin = −0.32 e Å3
3 restraintsAbsolute structure: Flack (1983), 1482 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.011 (12)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.68523 (9)0.02155 (2)0.832419 (15)0.04315 (11)
N10.9529 (7)0.01356 (17)1.02199 (12)0.0358 (5)
H1B1.0573−0.02211.04630.043*
N20.8795 (10)0.09857 (18)1.10959 (13)0.0490 (8)
H2A0.98000.06091.13270.059*
H2B0.80670.14461.12680.059*
C10.9123 (9)−0.00566 (19)0.95935 (15)0.0357 (7)
H1A0.9939−0.05700.94370.043*
C20.7526 (7)0.04972 (19)0.91899 (14)0.0347 (7)
C30.6342 (9)0.1270 (2)0.94344 (16)0.0408 (7)
H3A0.52710.16570.91640.049*
C40.6750 (10)0.14591 (18)1.00655 (15)0.0384 (7)
H4A0.59810.19741.02270.046*
C50.8371 (10)0.08579 (19)1.04763 (14)0.0363 (6)
O10.1449 (9)0.24380 (15)0.84486 (11)0.0517 (7)
O20.1646 (8)0.08864 (15)0.59255 (11)0.0525 (6)
O30.3456 (8)0.03807 (15)0.68650 (11)0.0529 (7)
N30.1458 (8)0.17784 (15)0.74829 (11)0.0337 (5)
H3B0.24650.13540.76600.040*
C60.0674 (9)0.24462 (19)0.78634 (16)0.0374 (7)
C7−0.0997 (9)0.3135 (2)0.75378 (17)0.0427 (8)
H7A−0.15830.36210.77640.051*
C8−0.1722 (11)0.3084 (2)0.69074 (17)0.0438 (7)
H8A−0.28410.35320.67080.053*
C9−0.0818 (10)0.2363 (2)0.65430 (15)0.0398 (7)
H9A−0.13210.23330.61080.048*
C100.0787 (9)0.1721 (2)0.68434 (14)0.0351 (7)
C110.2065 (10)0.09186 (19)0.65253 (14)0.0378 (7)
O1W0.5862 (19)0.3110 (3)0.51273 (19)0.133 (2)
H1W0.44510.34960.49060.159*
H2W0.71110.27780.48320.159*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.04628 (18)0.04800 (18)0.03519 (15)−0.00207 (15)−0.00408 (15)−0.00074 (15)
N10.0457 (14)0.0297 (12)0.0319 (11)0.0062 (12)−0.0001 (11)0.0035 (11)
N20.076 (2)0.0353 (13)0.0355 (13)0.0094 (15)−0.0032 (15)0.0006 (12)
C10.0412 (16)0.0307 (15)0.0353 (14)0.0010 (12)0.0025 (13)−0.0024 (12)
C20.0359 (19)0.0369 (14)0.0312 (13)−0.0034 (12)0.0007 (12)−0.0003 (12)
C30.0340 (18)0.0442 (17)0.0443 (16)0.0034 (14)−0.0016 (15)0.0061 (14)
C40.0444 (16)0.0276 (13)0.0432 (16)0.0049 (14)0.0015 (17)0.0124 (12)
C50.0387 (16)0.0338 (14)0.0365 (14)0.0010 (14)0.0007 (15)−0.0001 (12)
O10.0781 (19)0.0436 (13)0.0334 (11)−0.0015 (14)−0.0032 (13)−0.0099 (10)
O20.0727 (17)0.0530 (13)0.0318 (10)0.0202 (14)−0.0018 (13)−0.0070 (10)
O30.0790 (19)0.0410 (13)0.0388 (11)0.0190 (13)−0.0049 (13)−0.0051 (10)
N30.0465 (15)0.0257 (11)0.0288 (11)0.0039 (11)−0.0007 (12)0.0035 (9)
C60.0464 (18)0.0300 (15)0.0357 (15)−0.0040 (13)0.0034 (14)−0.0069 (13)
C70.044 (2)0.0346 (16)0.0492 (18)0.0092 (14)0.0090 (16)−0.0031 (14)
C80.0439 (18)0.0401 (16)0.0475 (17)0.0097 (17)0.0011 (17)0.0005 (14)
C90.0464 (18)0.0403 (17)0.0327 (15)0.0047 (14)0.0000 (13)0.0055 (13)
C100.0374 (16)0.0370 (15)0.0308 (14)0.0004 (13)0.0030 (12)−0.0009 (12)
C110.0475 (18)0.0330 (14)0.0329 (14)0.0045 (14)0.0000 (14)−0.0007 (11)
O1W0.216 (7)0.109 (3)0.074 (2)−0.002 (4)−0.033 (4)0.026 (2)

Geometric parameters (Å, °)

Br1—C21.881 (3)O2—C111.265 (4)
N1—C51.339 (4)O3—C111.231 (4)
N1—C11.353 (4)N3—C61.356 (4)
N1—H1B0.8600N3—C101.364 (4)
N2—C51.321 (4)N3—H3B0.8600
N2—H2A0.8600C6—C71.438 (5)
N2—H2B0.8600C7—C81.349 (5)
C1—C21.364 (4)C7—H7A0.9300
C1—H1A0.9300C8—C91.415 (5)
C2—C31.402 (5)C8—H8A0.9300
C3—C41.361 (5)C9—C101.345 (5)
C3—H3A0.9300C9—H9A0.9300
C4—C51.426 (4)C10—C111.516 (4)
C4—H4A0.9300O1W—H1W0.9404
O1—C61.259 (4)O1W—H2W0.9428
C5—N1—C1122.7 (3)C6—N3—H3B117.2
C5—N1—H1B118.6C10—N3—H3B117.2
C1—N1—H1B118.6O1—C6—N3120.5 (3)
C5—N2—H2A120.0O1—C6—C7125.0 (3)
C5—N2—H2B120.0N3—C6—C7114.4 (3)
H2A—N2—H2B120.0C8—C7—C6120.6 (3)
N1—C1—C2120.4 (3)C8—C7—H7A119.7
N1—C1—H1A119.8C6—C7—H7A119.7
C2—C1—H1A119.8C7—C8—C9121.5 (3)
C1—C2—C3118.9 (3)C7—C8—H8A119.2
C1—C2—Br1120.3 (2)C9—C8—H8A119.2
C3—C2—Br1120.8 (2)C10—C9—C8118.1 (3)
C4—C3—C2120.4 (3)C10—C9—H9A121.0
C4—C3—H3A119.8C8—C9—H9A121.0
C2—C3—H3A119.8C9—C10—N3119.7 (3)
C3—C4—C5119.2 (3)C9—C10—C11125.3 (3)
C3—C4—H4A120.4N3—C10—C11115.0 (3)
C5—C4—H4A120.4O3—C11—O2126.8 (3)
N2—C5—N1118.8 (3)O3—C11—C10117.9 (3)
N2—C5—C4122.9 (3)O2—C11—C10115.3 (3)
N1—C5—C4118.4 (3)H1W—O1W—H2W109.7
C6—N3—C10125.7 (3)
C5—N1—C1—C20.9 (5)O1—C6—C7—C8180.0 (4)
N1—C1—C2—C30.6 (5)N3—C6—C7—C81.1 (5)
N1—C1—C2—Br1−178.3 (2)C6—C7—C8—C9−1.1 (6)
C1—C2—C3—C4−0.7 (5)C7—C8—C9—C100.2 (6)
Br1—C2—C3—C4178.1 (3)C8—C9—C10—N30.7 (5)
C2—C3—C4—C5−0.5 (5)C8—C9—C10—C11−177.5 (3)
C1—N1—C5—N2178.2 (3)C6—N3—C10—C9−0.8 (5)
C1—N1—C5—C4−2.2 (5)C6—N3—C10—C11177.6 (3)
C3—C4—C5—N2−178.5 (4)C9—C10—C11—O3−179.1 (4)
C3—C4—C5—N11.9 (5)N3—C10—C11—O32.6 (5)
C10—N3—C6—O1−179.1 (4)C9—C10—C11—O22.6 (6)
C10—N3—C6—C7−0.1 (5)N3—C10—C11—O2−175.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.861.792.640 (4)171.
O1W—H1W···O2ii0.942.172.730 (5)117.
N2—H2A···O3i0.862.042.896 (4)172.
N2—H2B···O1iii0.861.962.819 (4)173.
O1W—H2W···O1Wii0.942.022.782 (9)137.
N3—H3B···Br10.862.843.681 (3)168.
C3—H3A···O10.932.443.351 (4)167.

Symmetry codes: (i) −x+3/2, −y, z+1/2; (ii) x+1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2585).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding Oxford: Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures Berlin: Springer.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society New York: Wiley.
  • Sawada, K. & Ohashi, Y. (1998). Acta Cryst. C54, 1491–1493.
  • Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soares-Santos, P. C. R., Nogueira, H. I. S., Rocha, J., Félix, V., Drew, M. G. B., Sá Ferreira, R. A., Carlos, L. D. & Trindade, T. (2003). Polyhedron, 22, 3529–3539.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sun, C. Y., Zheng, X. J. & Jin, L. P. (2004). Z. Anorg. Allg. Chem.630, 1342–1347.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography