PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2225–o2226.
Published online 2010 August 11. doi:  10.1107/S1600536810030631
PMCID: PMC3008070

2-Anilino-3-(2-hy­droxy­phen­yl)quinazolin-4(3H)-one methanol monosolvate

Abstract

In the title compound, C20H15N3O2·CH3OH, the quinazolin­one ring system is approximately planar, the dihedral angle between the pyrimidinone ring and the adjacent benzene ring being 1.73 (6)°. The pyrimidinone ring makes dihedral angles of 77.58 (6) and 29.62 (6)°, respectively, with the hy­droxy­phenyl and phenyl rings. In the crystal, the components are connected by O—H(...)O and C—H(...)O hydrogen bonds, forming a zigzag chain along the b axis.

Related literature

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al. (1999 [triangle]); Shiba et al. (1997 [triangle]); Malamas & Millen (1991 [triangle]); Mannschreck et al. (1984 [triangle]); Kung et al. (1999 [triangle]); Bartroli et al. (1998 [triangle]); Palmer et al. (1997 [triangle]); Tsou et al. (2001 [triangle]); Matsuno et al. (2002 [triangle]). For the synthesis of the title compound, see: Yang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2225-scheme1.jpg

Experimental

Crystal data

  • C20H15N3O2·CH4O
  • M r = 361.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2225-efi1.jpg
  • a = 11.5575 (18) Å
  • b = 8.7305 (13) Å
  • c = 18.892 (3) Å
  • β = 106.251 (2)°
  • V = 1830.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.986, T max = 0.991
  • 21942 measured reflections
  • 4541 independent reflections
  • 3087 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.123
  • S = 1.02
  • 4541 reflections
  • 254 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030631/is2582sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030631/is2582Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Hubei Medical University Educational Committee (grant No. 2009QJ12) for financial support, and acknowledge the Sophisticated Analytical Instrument Facility, Central China Normal University, Wuhan, for the data collection.

supplementary crystallographic information

Comment

Quinazoline-4(3H)-one derivatives have numerous biological properties. Some of these activities include antimicrobial (Pandeya et al., 1999; Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al., 2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We present here the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure, the pyrimidinone heterocycle and the adjacent benzene ring are not planar, but inclined at 1.73 (6)°. Significant intermolecular O—H···O and C—H···O and intramolecular O—H···O contribute strongly to the stability of the molecular configuration (Table 1 and Fig. 2).

Experimental

The title compound was prepared according to the literature method of Yang et al. (2008). To a solution of iminophosphorane (1.40 g, 3.0 mmol) in anhydrous THF (10 ml) was added isocyanatobenzene (3 mmol) under nitrogen at room temperature. After reaction, the mixture was allowed to stand for 10 h at 273–278 K, the solvent was removed under reduced pressure and diethyl ether/petroleum ether (1:2 v/v, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed to give 1-phenyl- 3-(2-ethoxycarbonylphenyl) carbodiimide, which was used directly without further purification. To a solution of 1-phenyl- 3-(2-ethoxycarbonylphenyl) carbodiimide in THF (15 ml) was added 2-aminophenol (3 mmol). After the reaction mixture was allowed to stand for 0.5 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 2 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound, (I). The product was recrystallized from methanol-dichloromethane (1:1 v/v, 20 ml) at room temperature to give crystals suitable for X-ray diffraction (yield 85%).

Refinement

All C-bound H atoms were located at their ideal positions with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), and refined as riding, with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms. H atoms bonded to N and O atoms were found in a difference map and then refined with distance restraints of N—H = 0.85 (2) Å and O—H = 0.90 (2) Å. The Uiso(H) values were set k times of their carrier atoms (k = 1.2 for N and 1.5 for O atoms).

Figures

Fig. 1.
View of the molecular structure of (I), showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A partial packing view of the crystal packing of (I), showing the formation of O—H···O and C—H···O hydrogen-bonds as dashed lines.

Crystal data

C20H15N3O2·CH4OF(000) = 760
Mr = 361.39Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6031 reflections
a = 11.5575 (18) Åθ = 2.5–24.8°
b = 8.7305 (13) ŵ = 0.09 mm1
c = 18.892 (3) ÅT = 298 K
β = 106.251 (2)°Block, colorless
V = 1830.1 (5) Å30.16 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer4541 independent reflections
Radiation source: fine-focus sealed tube3087 reflections with I > 2σ(I)
graphiteRint = 0.074
[var phi] and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −15→15
Tmin = 0.986, Tmax = 0.991k = −11→11
21942 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0641P)2] where P = (Fo2 + 2Fc2)/3
4541 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.14579 (11)0.79335 (13)0.16728 (6)0.0498 (3)
C20.02576 (10)0.74840 (13)0.15172 (6)0.0489 (3)
C3−0.05802 (12)0.85206 (15)0.16547 (8)0.0596 (3)
H3−0.13870.82430.15540.072*
C4−0.02146 (14)0.99419 (16)0.19373 (8)0.0689 (4)
H4−0.07741.06120.20370.083*
C50.09758 (14)1.03937 (16)0.20762 (8)0.0704 (4)
H50.12081.13710.22570.085*
C60.18058 (12)0.94065 (15)0.19480 (7)0.0631 (4)
H60.26060.97090.20430.076*
C70.23377 (10)0.68658 (14)0.15427 (7)0.0502 (3)
C80.06580 (9)0.51041 (13)0.11378 (6)0.0463 (3)
C90.27399 (9)0.42459 (14)0.12439 (6)0.0476 (3)
C100.33853 (10)0.35392 (14)0.18934 (7)0.0511 (3)
C110.41817 (10)0.23803 (15)0.18518 (8)0.0579 (3)
H110.46340.19060.22810.070*
C120.43103 (10)0.19237 (15)0.11810 (8)0.0610 (3)
H120.48340.11270.11600.073*
C130.36727 (12)0.26327 (16)0.05411 (8)0.0636 (4)
H130.37670.23210.00900.076*
C140.28910 (11)0.38117 (15)0.05734 (7)0.0578 (3)
H140.24680.43110.01440.069*
C15−0.07866 (10)0.29493 (13)0.07155 (7)0.0489 (3)
C16−0.10077 (12)0.17938 (15)0.01980 (7)0.0595 (3)
H16−0.04310.1553−0.00420.071*
C17−0.20769 (13)0.09931 (18)0.00341 (8)0.0753 (4)
H17−0.22180.0210−0.03130.090*
C18−0.29321 (13)0.1351 (2)0.03829 (11)0.0859 (5)
H18−0.36600.08230.02690.103*
C19−0.27106 (13)0.24912 (18)0.09009 (11)0.0851 (5)
H19−0.32910.27260.11400.102*
C20−0.16407 (11)0.32979 (16)0.10748 (9)0.0663 (4)
H20−0.14980.40660.14300.080*
C210.58910 (15)0.6035 (2)0.12019 (10)0.0872 (5)
H21A0.67360.60410.12380.131*
H21B0.54500.56240.07330.131*
H21C0.57520.54140.15890.131*
N10.18861 (7)0.54311 (10)0.12879 (5)0.0475 (2)
N2−0.01409 (8)0.60588 (11)0.12228 (6)0.0514 (3)
N30.03525 (9)0.36584 (12)0.08787 (6)0.0559 (3)
H3A0.0925 (13)0.3156 (15)0.0783 (8)0.067*
O10.34102 (7)0.71482 (11)0.16472 (5)0.0673 (3)
O20.31895 (9)0.40317 (12)0.25304 (5)0.0712 (3)
H2A0.3655 (16)0.346 (2)0.2930 (11)0.107*
O30.54980 (9)0.75565 (12)0.12703 (6)0.0731 (3)
H3B0.4742 (18)0.750 (2)0.1312 (11)0.110*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0534 (7)0.0500 (7)0.0447 (6)−0.0022 (5)0.0114 (5)0.0037 (5)
C20.0520 (7)0.0475 (7)0.0478 (6)0.0024 (5)0.0149 (5)0.0089 (5)
C30.0614 (8)0.0534 (8)0.0672 (8)0.0088 (6)0.0233 (6)0.0111 (6)
C40.0882 (11)0.0562 (8)0.0676 (9)0.0171 (7)0.0304 (8)0.0088 (7)
C50.0980 (12)0.0502 (8)0.0643 (9)−0.0023 (7)0.0246 (8)−0.0033 (6)
C60.0712 (9)0.0586 (8)0.0580 (8)−0.0113 (7)0.0157 (6)−0.0035 (6)
C70.0442 (6)0.0549 (7)0.0482 (7)−0.0061 (5)0.0074 (5)0.0027 (5)
C80.0383 (6)0.0494 (7)0.0498 (6)−0.0011 (5)0.0098 (5)0.0041 (5)
C90.0338 (5)0.0531 (7)0.0554 (7)−0.0019 (5)0.0121 (5)0.0008 (5)
C100.0382 (6)0.0602 (7)0.0555 (7)−0.0007 (5)0.0140 (5)0.0028 (6)
C110.0407 (6)0.0634 (8)0.0686 (8)0.0039 (6)0.0136 (6)0.0073 (7)
C120.0448 (7)0.0566 (8)0.0860 (10)−0.0001 (6)0.0257 (7)−0.0024 (7)
C130.0612 (8)0.0689 (9)0.0664 (9)−0.0030 (7)0.0270 (7)−0.0102 (7)
C140.0512 (7)0.0654 (8)0.0562 (8)−0.0004 (6)0.0140 (6)0.0022 (6)
C150.0389 (6)0.0494 (7)0.0553 (7)−0.0023 (5)0.0082 (5)0.0037 (5)
C160.0588 (8)0.0675 (8)0.0519 (7)−0.0093 (6)0.0148 (6)−0.0031 (6)
C170.0729 (10)0.0792 (10)0.0674 (9)−0.0250 (8)0.0090 (7)−0.0155 (8)
C180.0508 (8)0.0876 (12)0.1150 (14)−0.0237 (8)0.0160 (9)−0.0126 (10)
C190.0535 (8)0.0737 (10)0.1372 (16)−0.0113 (7)0.0414 (9)−0.0175 (10)
C200.0490 (7)0.0605 (8)0.0927 (11)−0.0064 (6)0.0253 (7)−0.0138 (7)
C210.0891 (11)0.0905 (12)0.0887 (12)−0.0085 (9)0.0360 (9)−0.0110 (9)
N10.0362 (5)0.0513 (6)0.0531 (6)0.0001 (4)0.0095 (4)0.0021 (4)
N20.0422 (5)0.0489 (6)0.0629 (6)0.0026 (4)0.0142 (4)0.0034 (5)
N30.0384 (5)0.0523 (6)0.0776 (7)−0.0009 (4)0.0173 (5)−0.0092 (5)
O10.0433 (5)0.0739 (6)0.0811 (7)−0.0113 (4)0.0114 (4)−0.0051 (5)
O20.0689 (6)0.0885 (7)0.0568 (6)0.0236 (5)0.0184 (5)0.0081 (5)
O30.0584 (6)0.0883 (8)0.0715 (6)−0.0126 (5)0.0163 (5)−0.0109 (5)

Geometric parameters (Å, °)

C1—C21.3917 (16)C12—C131.3743 (19)
C1—C61.4031 (18)C12—H120.9300
C1—C71.4502 (17)C13—C141.3822 (18)
C2—N21.3879 (15)C13—H130.9300
C2—C31.4017 (16)C14—H140.9300
C3—C41.3701 (19)C15—C161.3781 (17)
C3—H30.9300C15—C201.3796 (17)
C4—C51.3840 (19)C15—N31.4086 (14)
C4—H40.9300C16—C171.3775 (18)
C5—C61.3608 (19)C16—H160.9300
C5—H50.9300C17—C181.369 (2)
C6—H60.9300C17—H170.9300
C7—O11.2244 (13)C18—C191.369 (2)
C7—N11.3901 (15)C18—H180.9300
C8—N21.2869 (14)C19—C201.3804 (18)
C8—N31.3640 (15)C19—H190.9300
C8—N11.3969 (13)C20—H200.9300
C9—C141.3793 (17)C21—O31.4210 (19)
C9—C101.3893 (17)C21—H21A0.9600
C9—N11.4482 (14)C21—H21B0.9600
C10—O21.3554 (16)C21—H21C0.9600
C10—C111.3848 (16)N3—H3A0.854 (14)
C11—C121.3755 (19)O2—H2A0.940 (19)
C11—H110.9300O3—H3B0.90 (2)
C2—C1—C6120.14 (11)C14—C13—H13120.2
C2—C1—C7119.19 (11)C9—C14—C13119.83 (12)
C6—C1—C7120.67 (11)C9—C14—H14120.1
N2—C2—C1122.47 (11)C13—C14—H14120.1
N2—C2—C3118.96 (11)C16—C15—C20119.63 (11)
C1—C2—C3118.57 (11)C16—C15—N3116.96 (11)
C4—C3—C2120.22 (13)C20—C15—N3123.30 (11)
C4—C3—H3119.9C17—C16—C15120.50 (13)
C2—C3—H3119.9C17—C16—H16119.8
C3—C4—C5120.92 (13)C15—C16—H16119.8
C3—C4—H4119.5C18—C17—C16119.95 (14)
C5—C4—H4119.5C18—C17—H17120.0
C6—C5—C4119.91 (13)C16—C17—H17120.0
C6—C5—H5120.0C17—C18—C19119.64 (13)
C4—C5—H5120.0C17—C18—H18120.2
C5—C6—C1120.22 (12)C19—C18—H18120.2
C5—C6—H6119.9C18—C19—C20121.13 (14)
C1—C6—H6119.9C18—C19—H19119.4
O1—C7—N1120.15 (11)C20—C19—H19119.4
O1—C7—C1124.71 (11)C15—C20—C19119.14 (13)
N1—C7—C1115.14 (10)C15—C20—H20120.4
N2—C8—N3121.42 (10)C19—C20—H20120.4
N2—C8—N1124.48 (11)O3—C21—H21A109.5
N3—C8—N1114.10 (10)O3—C21—H21B109.5
C14—C9—C10120.95 (11)H21A—C21—H21B109.5
C14—C9—N1120.83 (10)O3—C21—H21C109.5
C10—C9—N1118.20 (10)H21A—C21—H21C109.5
O2—C10—C11124.12 (11)H21B—C21—H21C109.5
O2—C10—C9117.49 (11)C7—N1—C8121.07 (10)
C11—C10—C9118.39 (12)C7—N1—C9117.90 (9)
C12—C11—C10120.59 (12)C8—N1—C9120.82 (9)
C12—C11—H11119.7C8—N2—C2117.48 (10)
C10—C11—H11119.7C8—N3—C15128.13 (10)
C13—C12—C11120.68 (12)C8—N3—H3A114.4 (9)
C13—C12—H12119.7C15—N3—H3A117.4 (9)
C11—C12—H12119.7C10—O2—H2A110.0 (11)
C12—C13—C14119.52 (13)C21—O3—H3B107.3 (12)
C12—C13—H13120.2
C6—C1—C2—N2177.94 (11)N3—C15—C16—C17176.81 (12)
C7—C1—C2—N2−1.67 (17)C15—C16—C17—C180.5 (2)
C6—C1—C2—C3−1.20 (17)C16—C17—C18—C19−0.9 (3)
C7—C1—C2—C3179.18 (11)C17—C18—C19—C200.5 (3)
N2—C2—C3—C4−179.27 (11)C16—C15—C20—C19−0.8 (2)
C1—C2—C3—C4−0.10 (18)N3—C15—C20—C19−176.97 (13)
C2—C3—C4—C51.5 (2)C18—C19—C20—C150.4 (3)
C3—C4—C5—C6−1.6 (2)O1—C7—N1—C8−177.48 (10)
C4—C5—C6—C10.2 (2)C1—C7—N1—C83.11 (16)
C2—C1—C6—C51.14 (18)O1—C7—N1—C97.77 (16)
C7—C1—C6—C5−179.25 (12)C1—C7—N1—C9−171.63 (9)
C2—C1—C7—O1178.64 (11)N2—C8—N1—C7−0.53 (17)
C6—C1—C7—O1−0.98 (18)N3—C8—N1—C7178.81 (10)
C2—C1—C7—N1−1.99 (16)N2—C8—N1—C9174.06 (11)
C6—C1—C7—N1178.40 (10)N3—C8—N1—C9−6.60 (15)
C14—C9—C10—O2179.84 (11)C14—C9—N1—C7−104.81 (13)
N1—C9—C10—O2−1.35 (16)C10—C9—N1—C776.38 (13)
C14—C9—C10—C11−0.32 (17)C14—C9—N1—C880.43 (13)
N1—C9—C10—C11178.49 (10)C10—C9—N1—C8−98.38 (13)
O2—C10—C11—C12178.59 (12)N3—C8—N2—C2177.48 (11)
C9—C10—C11—C12−1.24 (17)N1—C8—N2—C2−3.23 (17)
C10—C11—C12—C131.56 (19)C1—C2—N2—C84.31 (16)
C11—C12—C13—C14−0.29 (19)C3—C2—N2—C8−176.55 (10)
C10—C9—C14—C131.57 (18)N2—C8—N3—C15−4.5 (2)
N1—C9—C14—C13−177.21 (11)N1—C8—N3—C15176.17 (11)
C12—C13—C14—C9−1.26 (19)C16—C15—N3—C8153.97 (13)
C20—C15—C16—C170.4 (2)C20—C15—N3—C8−29.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.940 (19)1.74 (2)2.6775 (14)173.8 (17)
C11—H11···O1i0.932.593.3781 (17)143.
O3—H3B···O10.90 (2)1.85 (2)2.7237 (14)164.1 (18)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2582).

References

  • Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem.41, 1869–1882. [PubMed]
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem.42, 4705–4713. [PubMed]
  • Malamas, M. S. & Millen, J. (1991). J. Med. Chem.34, 1492–1503. [PubMed]
  • Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem.19, 381–383.
  • Matsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem.45, 3057–3066. [PubMed]
  • Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem.40, 1519–1529. [PubMed]
  • Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv.74, 11–17. [PubMed]
  • Sheldrick, G. M. (2001). SADABS University of Goöttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189–194. [PubMed]
  • Tsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F. G., Uber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem.44, 2719–2734. [PubMed]
  • Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem.45, 1365–1369.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography