PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1101–m1102.
Published online 2010 August 18. doi:  10.1107/S1600536810031569
PMCID: PMC3008067

μ-Oxalato-bis­[(2,2′-bipyridyl)­copper(II)] bis(perchlorate) dimethyl­formamide disolvate monohydrate

Abstract

The title compound, [Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2O, contains doubly charged centrosymmetric dinuclear oxalato-bridged copper(II) complex cations, perchlorate anions, and DMF and water solvate mol­ecules. In the complex cation, the oxalate ligand is coordinated in a bis-bidentate bridging mode to the Cu atoms. Each Cu atom has a distorted tetra­gonal-bipyramidal environment, being coordinated by two N atoms of the two chelating bipy ligands and two O atoms of the doubly deprotonated oxalate anion. Pairs of perchlorate anions and water mol­ecules are linked into recta­ngles by O—H(...)O bonds in which the perchlorate O atoms act as acceptors and the water mol­ecules as donors. Methyl groups of the DMF solvent molecule are disordered over two sites with occupancies of 0.453 (7):0.547 (7), and the water molecule is half-occupied.

Related literature

For use of oxalic acid and its derivatives in mol­ecular magnetism and supra­molecular chemistry, see: Kahn (1987 [triangle]); Ojima & Nonoyama (1988 [triangle]); Fritsky et al. (1998 [triangle]); Świątek-Kozłowska et al. (2000 [triangle]). For use of oxalic acid for the preparation of mixed-ligand polynuclear complexes, see: Strotmeyer et al. (2003 [triangle]). For related structures, see: Krämer & Fritsky (2000 [triangle]); Kovbasyuk et al. (2004 [triangle]); Wörl et al. (2005 [triangle]); Tomyn et al. (2007 [triangle]); Moroz et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1101-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2O
  • M r = 1202.94
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1101-efi1.jpg
  • a = 9.6872 (5) Å
  • b = 11.0080 (8) Å
  • c = 12.2449 (5) Å
  • α = 97.928 (3)°
  • β = 99.565 (2)°
  • γ = 91.924 (2)°
  • V = 1273.16 (12) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.02 mm−1
  • T = 100 K
  • 0.23 × 0.12 × 0.08 mm

Data collection

  • Bruker Kappa APEXII DUO CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.802, T max = 0.923
  • 10051 measured reflections
  • 4993 independent reflections
  • 3955 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.129
  • S = 1.04
  • 4993 reflections
  • 359 parameters
  • 27 restraints
  • H-atom parameters constrained
  • Δρmax = 1.43 e Å−3
  • Δρmin = −0.70 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Bradenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810031569/jh2192sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031569/jh2192Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263–2008).

supplementary crystallographic information

Comment

Oxalic acid and its amide derivatives are widely used in molecular magnetism and supramolecular chemistry for preparation of various bi- and polynuclear complexes as well as exchange clusters of high nuclearity (Kahn, 1987; Ojima & Nonoyama, 1988; Fritsky et al., 1998; Świątek-Kozłowska et al., 2000). Use of additional bridging ligands sometimes results in increase of nuclearity of the target mixed ligands compounds (Strotmeyer et al., 2003). However, use of this synthetic strategy is often restricted by formation of complex species containing only one of the used bridging ligands. Herein we report a compound (I) isolated as a result of an attempt to obtain a mixed ligand complex containing both oxalate and pyridine-2-hydroxamate ligands.

In (I), the Cu atom has a distorted tetragonal-bipyramidal environment, with one oxygen atom of the oxalate (O2), three nitrogen atoms of the 2,2'-bipyridine ligand (N1, N2 and N4) occupying the base of the pyramid, and the second oxygen atom of the oxalate (O1) and one of the bipyridine nitrogen atoms (N3) in the apical positions (Fig. 1). The planar µ4-oxalato group lies in a center of symmetry and bridges the two copper atoms in a bis(chelating) mode, each copper atom being bound to two oxygens from the two different carboxylic groups. The Cu···Cu separation in the dimer is 5.6032 (9)Å which is slightly longer than the intermetallic separation observed in a related µ4-oxalato-bridged dicopper complex with (1-(pyridin-2-yl)ethylidene)hydrazine (5.449 (1) Å) (Tomyn et al., 2007). The C-N and C-C bond lenths in the 2,2'-bipyridine ligands are normal for 2-substituted pyridine derivatives (Krämer et al., 2000; Kovbasyuk et al., 2004; Wörl et al., 2005; Moroz et al., 2010).

In the crystal packing, the dimeric complex cations are organized in layers disposed parallel to the xy plane. The neighboring cations are linked by stacking interactions between the pyridine rings (both along x and y directions) and by van der Waals forces. The perchlorate anions and solvate water molecules are disposed between the cationic layers. Two pairs of the translational perchlorate anions and water molecules form rectangles due to H-bonds where perchlorate O atoms act as acceptors and H2O molecules as donors (Fig. 2, Table 1).

Experimental

Cu(ClO4)2.6H2O (0.371 g, 1 mmol) was dissolved in water (5 ml) and added to the dimethylformamide solution of pyridine-2-hydroxamic acid (0.138 g, 1 mmol) and 2,2'-bipyridine (0.156 g, 1 mmol), and then a powder of K2C2O4.H2O (0.092 g, 0.5 mmol) was added to the obtained solution. The resulting mixture was being stirred at 60 C° during 15 min and filtered. Turquoise crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether vapour to the resulting solution at room temperature within 72 hours. They were filtered off and washed with diethyl ether. Yield: 57%.

Refinement

Methyl groups of the dimethylformamide solvent molecule were disordered over two sites with occupancies 0.45/0.55. The N-C distances in the dimethylformamide molecules were restrained to to be similar and the anisotropic displacement parameters of the methyl carbons were constrained to be equal. The water of crystallization was refined with occupancy of 0.5. The H2O hydrogen atoms were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, and Uiso = 1.2-1.5 Ueq(parent atom). The highest peak is located 0.58 Å from atom C22B and the deepest hole is located 0.60 Å from atom O7.

Figures

Fig. 1.
A view of compound (1), with displacement ellipsoids shown at the 30% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry code: (i)1-x,1-y,1-z].
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[Cu2(C2O4)(C10H8N2)4](ClO4)2·2C3H7NO·H2OZ = 1
Mr = 1202.94F(000) = 618
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6872 (5) ÅCell parameters from 3860 reflections
b = 11.0080 (8) Åθ = 2.3–27.4°
c = 12.2449 (5) ŵ = 1.02 mm1
α = 97.928 (3)°T = 100 K
β = 99.565 (2)°Block, turquoise
γ = 91.924 (2)°0.23 × 0.12 × 0.08 mm
V = 1273.16 (12) Å3

Data collection

Bruker Kappa APEXII DUO CCD diffractometer4993 independent reflections
Radiation source: fine-focus sealed tube3955 reflections with I > 2σ(I)
curved graphite crystalRint = 0.023
Detector resolution: 16 pixels mm-1θmax = 26.0°, θmin = 1.7°
[var phi] scans and ω scans with κ offseth = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −13→13
Tmin = 0.802, Tmax = 0.923l = −10→15
10051 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0663P)2 + 2.0663P] where P = (Fo2 + 2Fc2)/3
4993 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 1.43 e Å3
27 restraintsΔρmin = −0.70 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.29558 (4)0.30820 (4)0.41931 (4)0.01694 (15)
Cl10.71283 (9)0.33716 (9)0.90518 (8)0.0256 (2)
O10.5313 (3)0.3455 (2)0.5049 (2)0.0206 (6)
O20.3249 (2)0.4898 (2)0.4286 (2)0.0176 (5)
O30.7943 (4)0.3548 (3)0.8209 (3)0.0517 (9)
O40.7375 (3)0.2198 (3)0.9423 (3)0.0351 (7)
O50.7470 (4)0.4320 (3)0.9976 (3)0.0534 (10)
O60.5683 (3)0.3377 (4)0.8567 (3)0.0523 (10)
O70.3074 (6)0.0419 (7)0.7731 (7)0.138 (3)
N10.3182 (3)0.1260 (3)0.4105 (3)0.0199 (7)
N20.3572 (3)0.2758 (3)0.2693 (3)0.0176 (6)
N30.0654 (3)0.3071 (3)0.3574 (3)0.0190 (6)
N40.2160 (3)0.3330 (3)0.5640 (3)0.0177 (6)
N50.0955 (5)0.0617 (5)0.7989 (5)0.0720 (17)
C10.2978 (4)0.0562 (4)0.4883 (4)0.0293 (9)
H10.26700.09320.55420.035*
C20.3199 (4)−0.0685 (4)0.4759 (4)0.0321 (10)
H20.3052−0.11600.53250.039*
C30.3636 (4)−0.1221 (3)0.3802 (4)0.0287 (9)
H30.3776−0.20760.36940.034*
C40.3870 (4)−0.0508 (3)0.3001 (4)0.0256 (8)
H40.4179−0.08630.23380.031*
C50.3646 (3)0.0738 (3)0.3182 (3)0.0186 (7)
C60.3871 (3)0.1588 (3)0.2378 (3)0.0180 (7)
C70.4363 (4)0.1248 (4)0.1392 (3)0.0269 (9)
H70.45600.04180.11760.032*
C80.4568 (4)0.2125 (4)0.0723 (3)0.0292 (9)
H80.49160.19060.00450.035*
C90.4265 (4)0.3320 (4)0.1045 (3)0.0267 (9)
H90.44060.39390.05990.032*
C100.3753 (4)0.3601 (3)0.2029 (3)0.0233 (8)
H100.35200.44210.22450.028*
C11−0.0050 (4)0.2868 (4)0.2522 (3)0.0259 (8)
H110.04700.27370.19280.031*
C12−0.1495 (4)0.2839 (4)0.2259 (4)0.0279 (9)
H12−0.19610.26860.15030.033*
C13−0.2244 (4)0.3038 (4)0.3131 (4)0.0275 (9)
H13−0.32390.30250.29790.033*
C14−0.1538 (4)0.3256 (3)0.4223 (3)0.0210 (8)
H14−0.20380.33970.48290.025*
C15−0.0077 (4)0.3266 (3)0.4419 (3)0.0177 (7)
C160.0767 (4)0.3479 (3)0.5566 (3)0.0177 (7)
C170.0176 (4)0.3815 (3)0.6520 (3)0.0233 (8)
H17−0.08020.39190.64580.028*
C180.1027 (4)0.3992 (4)0.7553 (3)0.0274 (9)
H180.06410.42260.82090.033*
C190.2450 (4)0.3828 (4)0.7632 (3)0.0273 (9)
H190.30520.39390.83390.033*
C200.2973 (4)0.3496 (3)0.6654 (3)0.0218 (8)
H200.39470.33810.67030.026*
C210.5591 (4)0.4576 (3)0.5219 (3)0.0168 (7)
C22A0.0103 (10)0.0664 (11)0.7051 (11)0.049 (2)0.453 (7)
H22A−0.08510.07700.72020.074*0.453 (7)
H22B0.0119−0.01010.65400.074*0.453 (7)
H22C0.04020.13590.67070.074*0.453 (7)
C23A0.075 (2)0.1244 (19)0.9138 (14)0.107 (4)0.453 (7)
H23A−0.02400.14290.91130.161*0.453 (7)
H23B0.13360.20100.93430.161*0.453 (7)
H23C0.10100.06970.96960.161*0.453 (7)
C22B0.0510 (8)0.0191 (9)0.6636 (8)0.049 (2)0.547 (7)
H22D−0.04970.02750.64100.074*0.547 (7)
H22E0.0726−0.06680.64470.074*0.547 (7)
H22F0.10360.07110.62410.074*0.547 (7)
C23B−0.0322 (15)0.1000 (16)0.8376 (15)0.107 (4)0.547 (7)
H23D−0.11060.08750.77450.161*0.547 (7)
H23E−0.02060.18720.86940.161*0.547 (7)
H23F−0.05170.05120.89500.161*0.547 (7)
C240.2302 (8)0.0497 (10)0.8262 (7)0.100 (3)
H240.26370.04750.90340.121*
O1W0.9215 (13)0.6412 (13)0.9750 (10)0.119 (4)0.50
H1W1.01040.62700.96370.179*0.50
H2W0.87650.57370.97560.179*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0187 (2)0.0152 (2)0.0193 (3)0.00275 (16)0.00795 (17)0.00502 (17)
Cl10.0245 (5)0.0333 (5)0.0202 (5)0.0044 (4)0.0052 (4)0.0060 (4)
O10.0211 (13)0.0159 (13)0.0269 (15)0.0031 (10)0.0067 (11)0.0074 (11)
O20.0161 (12)0.0166 (12)0.0217 (14)0.0036 (9)0.0059 (10)0.0043 (10)
O30.059 (2)0.058 (2)0.049 (2)0.0059 (18)0.0366 (18)0.0171 (18)
O40.0452 (17)0.0316 (16)0.0297 (17)0.0101 (13)0.0065 (14)0.0069 (13)
O50.091 (3)0.0350 (18)0.0285 (18)0.0096 (18)−0.0034 (18)−0.0029 (15)
O60.0277 (16)0.072 (3)0.062 (2)0.0046 (16)−0.0021 (16)0.035 (2)
O70.070 (4)0.139 (6)0.236 (9)0.031 (4)0.044 (5)0.107 (6)
N10.0209 (15)0.0146 (15)0.0249 (17)−0.0006 (12)0.0043 (13)0.0058 (13)
N20.0170 (14)0.0155 (14)0.0210 (16)0.0020 (11)0.0037 (12)0.0039 (12)
N30.0193 (15)0.0214 (16)0.0181 (16)0.0022 (12)0.0057 (12)0.0058 (13)
N40.0165 (14)0.0169 (15)0.0214 (17)0.0007 (11)0.0050 (12)0.0070 (13)
N50.038 (3)0.060 (3)0.117 (5)0.011 (2)0.032 (3)−0.015 (3)
C10.038 (2)0.023 (2)0.030 (2)−0.0007 (17)0.0105 (18)0.0074 (17)
C20.039 (2)0.021 (2)0.036 (3)−0.0037 (17)0.0019 (19)0.0133 (18)
C30.031 (2)0.0142 (18)0.037 (2)0.0020 (16)−0.0067 (18)0.0056 (17)
C40.0266 (19)0.0194 (19)0.029 (2)0.0046 (15)0.0007 (17)−0.0002 (16)
C50.0144 (16)0.0192 (18)0.0200 (19)−0.0001 (13)−0.0033 (14)0.0030 (15)
C60.0130 (16)0.0188 (18)0.0208 (19)0.0018 (13)0.0003 (14)0.0006 (15)
C70.032 (2)0.025 (2)0.024 (2)0.0060 (16)0.0081 (17)−0.0021 (16)
C80.032 (2)0.036 (2)0.021 (2)0.0026 (18)0.0107 (17)0.0004 (18)
C90.029 (2)0.028 (2)0.025 (2)−0.0008 (16)0.0087 (17)0.0088 (17)
C100.0278 (19)0.0192 (18)0.025 (2)0.0029 (15)0.0094 (16)0.0057 (16)
C110.0257 (19)0.030 (2)0.023 (2)0.0024 (16)0.0068 (16)0.0051 (17)
C120.027 (2)0.032 (2)0.024 (2)−0.0016 (16)−0.0008 (16)0.0056 (17)
C130.0189 (18)0.030 (2)0.033 (2)0.0015 (16)0.0027 (16)0.0049 (18)
C140.0208 (17)0.0181 (18)0.026 (2)0.0016 (14)0.0077 (15)0.0051 (15)
C150.0198 (17)0.0132 (16)0.0215 (19)0.0017 (13)0.0072 (15)0.0032 (14)
C160.0188 (17)0.0148 (17)0.0213 (19)−0.0001 (13)0.0068 (14)0.0055 (14)
C170.0205 (18)0.0253 (19)0.026 (2)0.0008 (15)0.0103 (16)0.0030 (16)
C180.028 (2)0.034 (2)0.023 (2)0.0019 (17)0.0125 (17)0.0038 (17)
C190.026 (2)0.035 (2)0.022 (2)−0.0014 (17)0.0053 (16)0.0073 (17)
C200.0188 (17)0.0252 (19)0.023 (2)0.0006 (15)0.0053 (15)0.0062 (16)
C210.0198 (17)0.0185 (18)0.0159 (18)0.0044 (14)0.0093 (14)0.0070 (14)
C22A0.011 (3)0.039 (4)0.098 (6)0.002 (3)0.005 (3)0.021 (4)
C23A0.083 (6)0.126 (7)0.107 (7)0.019 (5)0.019 (5)−0.007 (6)
C22B0.011 (3)0.039 (4)0.098 (6)0.002 (3)0.005 (3)0.021 (4)
C23B0.083 (6)0.126 (7)0.107 (7)0.019 (5)0.019 (5)−0.007 (6)
C240.050 (4)0.178 (10)0.066 (5)−0.029 (5)−0.004 (4)0.017 (5)
O1S0.095 (8)0.155 (12)0.110 (10)−0.004 (8)0.015 (7)0.032 (9)

Geometric parameters (Å, °)

Cu1—O21.995 (2)C8—H80.9500
Cu1—N22.015 (3)C9—C101.378 (5)
Cu1—N12.015 (3)C9—H90.9500
Cu1—N42.036 (3)C10—H100.9500
Cu1—N32.232 (3)C11—C121.381 (5)
Cu1—O12.346 (3)C11—H110.9500
Cl1—O51.417 (3)C12—C131.383 (6)
Cl1—O61.428 (3)C12—H120.9500
Cl1—O31.428 (3)C13—C141.382 (6)
Cl1—O41.442 (3)C13—H130.9500
O1—C211.236 (4)C14—C151.395 (5)
O2—C21i1.265 (4)C14—H140.9500
O7—C241.065 (9)C15—C161.486 (5)
N1—C11.339 (5)C16—C171.395 (5)
N1—C51.348 (5)C17—C181.375 (6)
N2—C101.340 (5)C17—H170.9500
N2—C61.348 (4)C18—C191.384 (5)
N3—C111.339 (5)C18—H180.9500
N3—C151.346 (5)C19—C201.385 (5)
N4—C201.340 (5)C19—H190.9500
N4—C161.354 (4)C20—H200.9500
N5—C22A1.313 (11)C21—O2i1.265 (4)
N5—C241.305 (9)C21—C21i1.573 (7)
N5—C23B1.463 (14)C22A—H22A0.9800
N5—C23A1.527 (14)C22A—H22B0.9800
N5—C22B1.631 (11)C22A—H22C0.9800
C1—C21.387 (6)C23A—H23A0.9800
C1—H10.9500C23A—H23B0.9800
C2—C31.375 (6)C23A—H23C0.9800
C2—H20.9500C22B—H22D0.9800
C3—C41.379 (6)C22B—H22E0.9800
C3—H30.9500C22B—H22F0.9800
C4—C51.390 (5)C23B—H23D0.9800
C4—H40.9500C23B—H23E0.9800
C5—C61.485 (5)C23B—H23F0.9800
C6—C71.380 (5)C24—H240.9500
C7—C81.379 (6)O1W—H1W0.9100
C7—H70.9500O1W—H2W0.8500
C8—C91.377 (6)
O2—Cu1—N292.86 (11)C8—C9—C10118.6 (4)
O2—Cu1—N1165.61 (11)C8—C9—H9120.7
N2—Cu1—N180.78 (12)C10—C9—H9120.7
O2—Cu1—N489.79 (11)N2—C10—C9122.3 (4)
N2—Cu1—N4174.69 (12)N2—C10—H10118.8
N1—Cu1—N497.65 (12)C9—C10—H10118.8
O2—Cu1—N393.94 (10)N3—C11—C12123.2 (4)
N2—Cu1—N397.73 (11)N3—C11—H11118.4
N1—Cu1—N399.68 (12)C12—C11—H11118.4
N4—Cu1—N377.48 (11)C11—C12—C13118.1 (4)
O2—Cu1—O177.12 (9)C11—C12—H12121.0
N2—Cu1—O189.30 (11)C13—C12—H12121.0
N1—Cu1—O189.83 (10)C14—C13—C12119.7 (4)
N4—Cu1—O195.78 (10)C14—C13—H13120.2
N3—Cu1—O1168.94 (10)C12—C13—H13120.2
O5—Cl1—O6110.2 (2)C13—C14—C15118.8 (4)
O5—Cl1—O3110.4 (2)C13—C14—H14120.6
O6—Cl1—O3107.9 (2)C15—C14—H14120.6
O5—Cl1—O4109.5 (2)N3—C15—C14121.6 (3)
O6—Cl1—O4108.4 (2)N3—C15—C16115.9 (3)
O3—Cl1—O4110.2 (2)C14—C15—C16122.5 (3)
C21—O1—Cu1108.6 (2)N4—C16—C17121.1 (3)
C21i—O2—Cu1119.4 (2)N4—C16—C15116.2 (3)
C1—N1—C5118.8 (3)C17—C16—C15122.7 (3)
C1—N1—Cu1126.4 (3)C18—C17—C16119.2 (3)
C5—N1—Cu1114.7 (2)C18—C17—H17120.4
C10—N2—C6119.1 (3)C16—C17—H17120.4
C10—N2—Cu1125.8 (3)C17—C18—C19119.8 (4)
C6—N2—Cu1115.0 (2)C17—C18—H18120.1
C11—N3—C15118.6 (3)C19—C18—H18120.1
C11—N3—Cu1129.3 (3)C20—C19—C18118.3 (4)
C15—N3—Cu1112.0 (2)C20—C19—H19120.9
C20—N4—C16119.0 (3)C18—C19—H19120.9
C20—N4—Cu1122.7 (2)N4—C20—C19122.7 (3)
C16—N4—Cu1117.9 (2)N4—C20—H20118.7
C22A—N5—C24134.7 (8)C19—C20—H20118.7
C22A—N5—C23B78.1 (9)O1—C21—O2i125.4 (3)
C24—N5—C23B146.3 (9)O1—C21—C21i117.5 (4)
C22A—N5—C23A125.4 (9)O2i—C21—C21i117.1 (4)
C24—N5—C23A96.1 (9)N5—C22A—H22A109.4
C23B—N5—C23A49.9 (9)N5—C22A—H22B109.5
C24—N5—C22B108.0 (6)H22A—C22A—H22B109.5
C23B—N5—C22B105.5 (9)N5—C22A—H22C109.5
C23A—N5—C22B154.7 (8)H22A—C22A—H22C109.5
N1—C1—C2122.2 (4)H22B—C22A—H22C109.5
N1—C1—H1118.9N5—C23A—H23A109.5
C2—C1—H1118.9N5—C23A—H23B109.4
C3—C2—C1118.8 (4)H23A—C23A—H23B109.5
C3—C2—H2120.6N5—C23A—H23C109.5
C1—C2—H2120.6H23A—C23A—H23C109.5
C2—C3—C4119.6 (4)H23B—C23A—H23C109.5
C2—C3—H3120.2N5—C22B—H22D109.5
C4—C3—H3120.2N5—C22B—H22E109.5
C3—C4—C5118.7 (4)H22D—C22B—H22E109.5
C3—C4—H4120.6N5—C22B—H22F109.5
C5—C4—H4120.6H22D—C22B—H22F109.5
N1—C5—C4121.8 (3)H22E—C22B—H22F109.5
N1—C5—C6115.0 (3)N5—C23B—H23D109.5
C4—C5—C6123.2 (4)N5—C23B—H23E109.5
N2—C6—C7121.2 (3)H23D—C23B—H23E109.5
N2—C6—C5114.4 (3)N5—C23B—H23F109.4
C7—C6—C5124.4 (3)H23D—C23B—H23F109.5
C8—C7—C6119.3 (4)H23E—C23B—H23F109.5
C8—C7—H7120.3O7—C24—N5128.6 (9)
C6—C7—H7120.3O7—C24—H24115.7
C9—C8—C7119.4 (4)N5—C24—H24115.7
C9—C8—H8120.3H1W—O1W—H2W110.2
C7—C8—H8120.3

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5ii0.912.453.311 (13)159.
O1W—H2W···O50.852.042.882 (14)169.

Symmetry codes: (ii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2192).

References

  • Bradenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc., Dalton Trans. pp. 326–3274.
  • Kahn, O. (1987). Struct. Bond.68, 89–167.
  • Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun pp. 880–881. [PubMed]
  • Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem pp. 3505–3510.
  • Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem 49, 4750–4752. [PubMed]
  • Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev.92, 85–111.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem.15, 529–547.
  • Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans pp. 4064–4068.
  • Tomyn, S. V., Gumienna-Kontecka, E., Fritsky, I. O., Iskenderov, T. S. & Światek-Kozłowska, J. (2007). Acta Cryst. E63, m438–m440.
  • Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography