PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2425.
Published online 2010 August 28. doi:  10.1107/S1600536810030242
PMCID: PMC3008063

1,2,3,4-Tetra­hydro­phenazine 5,10-dioxide

Abstract

The complete mol­ecule of the title compound, C12H12N2O2, lies on two crystallographic symmetry elements: a twofold axis and a mirror plane. In the mol­ecular structure, the quinoxaline ring and two methyl­ene substituents lie on the mirror plane while the other two methyl­ene groups are disordered about the plane. The crystal packing is stabilized by weak inter­molecular π–π stacking inter­actions with centroid–centroid distances of 3.6803 (7) Å.

Related literature

For the synthetic preparation, see: Haddadin & Issidorides (1965 [triangle]); Issidorides & Haddadin (1966 [triangle]). For background to quinoxaline di-N-oxide compounds, see: Edwards et al. (1975 [triangle]) and for their biological activity, see: Urquiola et al. (2008 [triangle]). For a related structure, see: Wang et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2425-scheme1.jpg

Experimental

Crystal data

  • C12H12N2O2
  • M r = 216.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2425-efi1.jpg
  • a = 11.7780 (2) Å
  • b = 13.1938 (3) Å
  • c = 6.5561 (1) Å
  • V = 1018.80 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.31 × 0.29 × 0.26 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.67, T max = 0.74
  • 3311 measured reflections
  • 620 independent reflections
  • 534 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.127
  • S = 1.10
  • 620 reflections
  • 61 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810030242/nk2042sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030242/nk2042Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the NSFC (grant No. 20625307), the National Basic Research Program of China (973 Program, 2009CB930103) and the Graduate Independent Innovation Foundation of Shandong University (GIIFSDU).

supplementary crystallographic information

Comment

Quinoxaline di-N-oxide compounds are widely used in sterilization and growth-promoting of animals, pharmacological properties usable as intermediates for producing plant protection agents (Edwards et al.,1975). There has been a growing interest in the syntheses of quinoxaline di-N-oxide compounds that have both biological and commercial importance (Urquiola et al., 2008). Now, we report herein the crystal structure of the title benzotriazole derivative.

The complete molecule of the title compound, C12H12N2O2, is generated by a crystallographic symmetry operation along a twofold axis. In the moleclcular structure of the crystal, the quinoxaline ring and two methylene substituents of the quinoxaline ring locate at a mirror plane of the Cmcm group. The other two methylenes of the cyclohexane ring are disordered over two positions with half occupancy. The crystal packing is stabilized by weak intermolecular π-π aromatic stacking interactions with centroid-centroid distances of 3.6803 (7) Å.

Experimental

The compound was synthesized as described previously by Haddadin & Issidorides (1965) and Issidorides & Haddadin (1966). Yellow crystals were obtained by slow evaporation of a methanolic solution.

Refinement

H atoms in the benzene were placed in geometrically calculated positions and refined using a riding model. H atoms in CH2 groups were located in geometrically calculated positions also but their positions were refined independently and their isotropic displacement parameters were fixed to 0.08 in the refinement. Two CH2 groups were disordered over symmetry elements and refined with half occupancy.

Figures

Fig. 1.
Figure 1. A view of the title compound with displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by a twofold rotation. The second disorder component is omitted.

Crystal data

C12H12N2O2F(000) = 456
Mr = 216.24Dx = 1.410 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 1577 reflections
a = 11.7780 (2) Åθ = 2.3–26.8°
b = 13.1938 (3) ŵ = 0.10 mm1
c = 6.5561 (1) ÅT = 296 K
V = 1018.80 (3) Å3Prism, yellow
Z = 40.31 × 0.29 × 0.26 mm

Data collection

Bruker APEXII CCD area-detector diffractometer620 independent reflections
Radiation source: fine-focus sealed tube534 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 26.9°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.67, Tmax = 0.74k = −16→12
3311 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0854P)2 + 0.1004P] where P = (Fo2 + 2Fc2)/3
620 reflections(Δ/σ)max < 0.001
61 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Experimental. 1H NMR (400?MHz, DMSO-d6): δ 8.67 (2H, d, J = 3.5?Hz, Ar—H), 7.89 (2H, d, J = 3.2?Hz, Ar—H), 3.77 (1H, s, CH), 2.66 (3H, s, CH3), 2.51 (2H, m, CH2), 1.45 (6H, s, CH3); Calcd for C13H16N2O2: C, 67.22; H, 6.94; N, 12.06. Found: C, 67.18; H, 6.99; N, 11.95; ESIMS calcd for C13H16N2O2H+ m/z 232.38, found m/z 232.19.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.44078 (13)−0.14330 (10)0.25000.0434 (4)
H10.4017−0.20450.25000.052*
C20.38142 (12)−0.05388 (9)0.25000.0399 (4)
H20.3025−0.05440.25000.048*
C30.44062 (11)0.03818 (9)0.25000.0311 (4)
C40.44068 (10)0.21722 (9)0.25000.0326 (4)
C50.37292 (12)0.31337 (10)0.25000.0470 (4)
H50.3247 (10)0.3113 (9)0.131 (2)0.070*
C60.44666 (19)0.40485 (17)0.1867 (4)0.0618 (9)0.50
H60.407 (2)0.4669 (19)0.199 (5)0.090*0.50
H70.468 (3)0.3993 (19)0.040 (4)0.090*0.50
N10.38161 (10)0.12976 (7)0.25000.0336 (4)
O10.27161 (9)0.12938 (6)0.25000.0508 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0608 (9)0.0288 (7)0.0407 (7)−0.0082 (5)0.0000.000
C20.0426 (8)0.0339 (7)0.0432 (7)−0.0078 (5)0.0000.000
C30.0339 (8)0.0281 (7)0.0314 (6)−0.0008 (4)0.0000.000
C40.0318 (7)0.0277 (7)0.0384 (7)0.0008 (4)0.0000.000
C50.0372 (8)0.0320 (8)0.0719 (10)0.0056 (5)0.0000.000
C60.0516 (11)0.0289 (10)0.105 (3)0.0038 (7)0.0002 (10)0.0110 (10)
N10.0282 (6)0.0313 (6)0.0412 (6)−0.0005 (3)0.0000.000
O10.0269 (6)0.0447 (7)0.0807 (8)−0.0011 (3)0.0000.000

Geometric parameters (Å, °)

C1—C21.3714 (19)C5—C6ii1.544 (3)
C1—C1i1.395 (3)C5—C61.544 (3)
C1—H10.9300C5—H50.965 (13)
C2—C31.4005 (17)C6—C6ii0.831 (5)
C2—H20.9300C6—C6iii1.256 (5)
C3—N11.3939 (15)C6—C6i1.506 (4)
C3—C3i1.399 (2)C6—H60.95 (2)
C4—N11.3474 (15)C6—H71.00 (3)
C4—C4i1.397 (2)N1—O11.2956 (16)
C4—C51.4987 (16)
C2—C1—C1i120.65 (9)C6ii—C6—C6iii90.000 (2)
C2—C1—H1119.7C6ii—C6—C6i56.5 (2)
C1i—C1—H1119.7C6iii—C6—C6i33.5 (2)
C1—C2—C3119.49 (15)C6ii—C6—C574.39 (10)
C1—C2—H2120.3C6iii—C6—C5124.23 (10)
C3—C2—H2120.3C6i—C6—C5108.72 (16)
N1—C3—C3i119.90 (7)C6ii—C6—H685.1 (18)
N1—C3—C2120.24 (14)C6iii—C6—H6119.6 (16)
C3i—C3—C2119.86 (8)C6i—C6—H6111.4 (17)
N1—C4—C4i121.08 (7)C5—C6—H6112.1 (16)
N1—C4—C5116.74 (12)C6ii—C6—H7164.4 (18)
C4i—C4—C5122.17 (7)C6iii—C6—H775.0 (18)
C4—C5—C6ii111.23 (14)C6i—C6—H7108.4 (18)
C4—C5—C6111.23 (14)C5—C6—H7110.3 (16)
C6ii—C5—C631.2 (2)H6—C6—H7106 (2)
C4—C5—H5106.8 (7)O1—N1—C4121.31 (9)
C6ii—C5—H5124.8 (8)O1—N1—C3119.68 (9)
C6—C5—H597.8 (7)C4—N1—C3119.01 (13)
C1i—C1—C2—C30.0C4—C5—C6—C6i−50.6 (2)
C1—C2—C3—N1180.0C6ii—C5—C6—C6i45.6 (2)
C1—C2—C3—C3i0.0C4i—C4—N1—O1180.0
N1—C4—C5—C6ii163.23 (11)C5—C4—N1—O10.0
C4i—C4—C5—C6ii−16.77 (11)C4i—C4—N1—C30.0
N1—C4—C5—C6−163.23 (11)C5—C4—N1—C3180.0
C4i—C4—C5—C616.77 (11)C3i—C3—N1—O1180.0
C4—C5—C6—C6ii−96.23 (6)C2—C3—N1—O10.0
C4—C5—C6—C6iii−17.19 (11)C3i—C3—N1—C40.0
C6ii—C5—C6—C6iii79.04 (8)C2—C3—N1—C4180.0

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, y, −z+1/2; (iii) −x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2042).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2007). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Edwards, M. L., Bambury, R. E. & Ritter, H. W. (1975). J. Med. Chem.18, 637–639. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Haddadin, M. J. & Issidorides, C. H. (1965). Tetrahedron Lett.6, 3253–3256.
  • Issidorides, C. H. & Haddadin, M. J. (1966). J. Org. Chem.31, 4067–4068.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Urquiola, C., Cabrera, M., Lavaggi, M. L., Cerecetto, H., Gonzalez, M., Cerain, A. L., Monge, A., Costa-Filho, A. J. & Torre, M. H. (2008). J. Inorg. Biochem.102, 119–126. [PubMed]
  • Wang, Z., Jia, W., Yao, H., Qiu, H. & Wang, W. (2010). Acta Cryst. E66, o1380. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography